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Chapter 1

Real numbers and complex
numbers

1.1 The set of real numbers

1.1.1 Commutative �eld structure

Let R be the set of real numbers.
We provide R with two operations: addition (+) and multiplication (:).
(R;+; :) is a commutative �eld:
1) (+) is internal: 8x; y 2 R; x+ y 2 R:
2) (+) is commutative: 8x; y 2 R; x+ y = y + x:
3) (+) is associative: 8x; y; z 2 R; (x+ y) + z = x+ (y + z):
4) (+) admits a neutral element: 9e = 0 2 R;8x 2 R; x+ 0 = 0 + x = x:
5) Every element has a symmetrical element:
8x 2 R;9x0 = �x 2 R; x+ x0 = x0 + x = 0:
So, (R;+) is a commutative group.
6) (:) is internal: 8x; y 2 R; x:y 2 R:
7) (:) is commutative: 8x; y 2 R; x:y = y:x:
8) (:) is associative: 8x; y; z 2 R; (x:y):z = x:(y:z):
9) Distributivity: 8x; y; z 2 R; (x+ y):z = x:z + y:z:
So, (R;+; :) is a commutative ring.
10) (:) admits a neutral element: 9e0 = 1 2 R;8x 2 R; x:1 = 1:x = x:
11) Every non-zero element has a symmetric element:
8x 2 R�;9x0 = x�1 2 R; x:x�1 = x�1:x = 1:
Hence, (R+; :) is a commutative �eld.

1.1.2 Total order relation

We provide R with a total order relation (�):

1



2 CHAPTER 1. REAL NUMBERS AND COMPLEX NUMBERS

a) (�) is re�exive: 8x 2 R; x � x:
b) (�) is antisymmetric: 8x; y 2 R; (x � y ^ y � x)) x = y:
c) (�) is transitive: 8x; y; z 2 R; (x � y ^ y � z)) x � z:
d) (�) is a total order relation: 8x; y 2 R; x � y _ y � x:
i.e. we can always compare between two real numbers.
e) 8x; y; z 2 R; x � y ) x+ z � y + z:
f) (0 � x ^ 0 � y)) 0 � x:y:

Conclusion 1 (R;+;�;�) is a totally ordered commutative �eld.

1.1.3 The absolute value

Notation 2 R� = Rn f0g :
R+ = fx 2 R=x � 0g ; R�+ = fx 2 R=x > 0g :
R� = fx 2 R=x � 0g ; R�� = fx 2 R=x < 0g :
R+ [ R� = R; R+ \ R� = f0g :

De�nition 3 The absolute value is the following application:

j:j : R �! R+
x �! jxj =

�
x; x � 0;
�x; x < 0:

Remark 4 8x 2 R; � jxj � x � jxj :

Absolute value properties:
1) jxj = 0() x = 0:
2) 8x; y 2 R; jx:yj = jxj jyj :

3) 8x 2 R�;
���� 1x
���� = 1

jxj :

4) 8x 2 R; (jxj � �() �� � x � �):
5) 8x; y 2 R; jx� yj � jxj+ jyj :Triangle inequality.
6) 8x; y 2 R; jjxj � jyjj � jx� yj :

1.1.4 Intervals of R
De�nition 5 Let I be a nonempty part of R. I is an interval of R if it satis�es
the following property:

8x1; x2 2 I;8y 2 R; (x1 < y < x2 =) y 2 I):

Proposition 6 Let I1 and I2 be two intervals of R such that I1 \ I2 6= ;, then
I1 \ I2 is an interval of R.
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Indeed, let x1; x2 2 I1\I2 be such that x1 < x2 and y such that x1 < y < x2:
Let us show that y 2 I1 \ I2 :
We have x1; x2 2 I1 \ I2 =) x1; x2 2 I1^ x1; x2 2 I2;
therefore, x1; x2 2 I1 ^ x1 < y < x2 =) y 2 I1 (because I1 is an interval),
and x1; x2 2 I2 ^ x1 < y < x2 =) y 2 I2 (because I2 is an interval),
hence, y 2 I1 ^ y 2 I2 =) y 2 I1 \ I2:
So, I1 \ I2 is an interval.

Remark 7 The union of two intervals of R is not necessarily an interval.

Here is an example:

Example 8 I1 = [0; 1] ^ I2 = [3; 4] :
I = I1 [ I2 = [0; 1] [ [3; 4] :
We take x1 = 1 2 I , x2 = 3 2 I and y = 2:
We have x1 = 1 < y = 2 < x2 = 3, but y = 2 =2 I:
Hence, I = I1 [ I2 is not an interval.

The intervals of R :
Let a; b 2 R be such that a � b;
[a; ; b] = fx 2 R=a � x � bg ;
[a; b[ = fx 2 R=a � x < bg ;
]a; b] = fx 2 R=a < x � bg ;
]a; b[ = fx 2 R=a < x < bg ;
[a;+1[ = fx 2 R=a � xg ;
]a;+1[ = fx 2 R=a < xg ;
]�1; a] = fx 2 R=x � ag ;
]�1; a[ = fx 2 R=x < ag ;
R = ]�1;+1[ :

1.1.5 Upper bound of a subset of R
De�nition 9 Let A be a nonempty part of R (A � R; A 6= ;). We say that
M 2 R is an upper bound of A if it satis�es

8x 2 A; x �M

We say that A is bounded above if

9M 2 R;8x 2 A; x �M

Remark 10 If M is an upper bound of A, then all real numbers M 0 � M are
also upper bounds of A.



4 CHAPTER 1. REAL NUMBERS AND COMPLEX NUMBERS

1.1.6 Supremum of a subset of R
De�nition 11 Let A be a nonempty part of R(A � R; A 6= ;) and bounded
above. The supremum of A is the smallest upper bound of A. We denote it
supA:

Remark 12 The supremum when it exists is unique.

Example 13 A = [�1; 5] � R; A 6= ;;8x 2 A; x � 5;
M = 5 is an upper bound of A:
We notice that all the real M 0 � 5 are also upper bounds of A: Then, the set

of upper bounds of A is MA = [5;+1[ :
supA is the smallest upper bound of A; then supA = 5:

1.1.7 Lower bound of a subset of R
De�nition 14 Let A be a nonempty part of R (A � R; A 6= ;). We say that
m 2 R is a lower bound of A if it satis�es

8x 2 A; m � x

We say that A is bounded below if

9m 2 R;8x 2 A; m � x

Remark 15 If m is a lower bound of A, then all real numbers m0 � m are also
lower bounds of A.

1.1.8 In�mum of a subset of R
De�nition 16 Let A be a nonempty part of R(A � R; A 6= ;) and bounded
below. The in�mum of A is the greatest lower bound of A. We denote it inf A:

Remark 17 The in�mum when it exists is unique.

Example 18 A = [�1; 5] � R; A 6= ;; 8x 2 A; �1 � x;
m = �1 is a lower bound of A:
We notice that all the real m0 � �1 are also lower bounds of A:Then the set

of lower bound of A is mA = ]�1;�1] :
inf A is the greatest lower bound of A; then inf A = �1

Remark 19 1) If A is a nonempty part of R not bounded above, we set supA =
+1:
2) If A is a nonempty part of R not bounded below, we set inf A = �1:
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1.1.9 Bounded set

De�nition 20 Let A be a nonempty part of R. A is bounded if A is bounded
above and bounded below.

A is bounded () (9M;m 2 R;8x 2 A; m � x �M):

A is bounded () (9� > 0;8x 2 A; jxj � �):

1.1.10 Axiom of the supremum

Any nonempty part of R and bounded above admits a supremum.

1.1.11 Axiom of the in�mum

Any nonempty part of R and bounded below admits an in�mum.

Remark 21 This result is not true in Q:
Indeed, let A be a nonempty and bounded part of Q; then supA and inf A do

not necessarily exist in Q:

Example 22 A =
�
�
p
2;
p
2
�
\ Q is a nonempty and bounded part of Q: We

notice that supA =
p
2 =2 Q and inf A = �

p
2 =2 Q

1.1.12 Characterization of the supremum

Proposition 23 Let A be a nonempty part of R and let M 2 R: Then we have

M = supA()
�
1�) 8x 2 A; x �M;
2�) 8" > 0;9x0 2 A = x0 > M � ":

Example 24 Let A = [1; 2[ ; M = 2; 8x 2 A; x � 2:
If we take " = 0; 1 =)M � " = 1; 9:
9x0 = 1; 94 2 A = x0 = 1; 94 > M � " = 1; 9:
Then (M � ") is not an upper bound of A:

1.1.13 Characterization of the in�mum

Proposition 25 Let A be a nonempty part of R and let m 2 R: Then we have

m = inf A()
�
1�) 8x 2 A; x � m;
2�) 8" > 0;9x0 2 A = x0 < m+ ":
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Remark 26 If M is an upper bound of A and M 2 A; then M = supA:
Indeed, let " > 0; just take x0 =M > M � ";
from the characterization of the supremun, M = supA:
In this case maxA = supA =M (maxA exists).

Remark 27 If m is a lower bound of A and m 2 A; then m = inf A:
Indeed, let " > 0; just take x0 = m < m+ ";
from the characterization of the in�mum, m = inf A:
In this case minA = inf A = m (minA exists).

Remark 28 - If supA exists but supA =2 A, then maxA do not exists.
- If inf A exists but inf A =2 A, then minA do not exists.

Example 29 Let A = [0; 1[ ;
supA = 1 =2 A, then maxA do not exists,
inf A = 0 2 A, then minA = inf A = 0:

1.1.14 Properties of the supremum and the in�mum

Let A and B de two nonempty parts of R. Then we have the following properties
:
1) If B is bounded and A � B, then A is bounded and we have

inf B � inf A � supA � supB:

If A and B are bounded, then

2) A [B is bounded and nonempty and we have

sup(A [B) = max(supA; supB);
inf(A [B) = min(inf A; inf B):

3) If A \B 6= ;, then A \B is bounded and we have

sup(A \B) � min(supA; supB);
inf(A \B) � max(inf A; inf B):

4) Let A+ B = fx+ y = x 2 A ^ y 2 Bg, then A+ B is bounded and non-
empty and we have

sup(A+B) = supA+ supB;

inf(A+B) = inf A+ inf B:

5) Let �A = f�x = x 2 Ag, then � A is bounded and nonempty and we
have

sup(�A) = � inf A;
inf(�A) = � supA:
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1.1.15 Archimedes�axiom

8x 2 R;8y > 0;9n 2 N� = n:y > x:

Example 30 let x = 5 and y = 2: Find n 2 N� such that n:y > x;
n >

x

y
=
5

2
=) n > 2; 5: Just take n = 3:

1.1.16 The greatest integer function (Floor function)

De�nition 31 Let x 2 R: The greatest integer of x is the greatest integer less
than or equal to x: It is noted E(x) or [x] or bxc :
8x 2 R;9n 2 Z = n � x < n+ 1:
[:] : R �! Z = [x] = E(x) = n:

Example 32 E(2; 7) = [2; 7] = 2 (2 � 2; 7 < 3):
E(�3; 1) = [�3; 1] = �4 (�4 � �3; 1 < �3):

Property

8x 2 R; [x] � x < [x] + 1;

then

8x 2 R; x� 1 < [x] � x:

Graph of the greatest integer function
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1.1.17 Density of Q in R
Theorem 33 (Density theorem)
Let x; y 2 R be such that x < y; then 9q 2 Q = x < q < y:

Conclusion 34 Between two distinct real numbers, there exists a rational.
So between two distinct real numbers, there exists an in�nity of rational

numbers.

1.1.18 Notion of topology in R
De�nition 35 (Adherent point )
Let A be a nonempty part of R. We say that x is an adherent point of A if

every open interval I containing x meets A (i.e. I\A 6= ;). The set of adherent
points of A is denoted A: the closure of A.
x 2 A() 8I open interval containing x; I \A 6= ;:

Remark 36 1) A � A:
2) x 2 A() 8" > 0; ]x� "; x+ "[ \A 6= ;:

Example 37 1) A = [0; 1] =) A = [0; 1] :

2) A = ]�1; 1[ =) A = [�1; 1] :

3) A =

�
1

n
= n 2 N�

�
=) A =

�
1

n
= n 2 N�

�
[ f0g :

1.1.19 Application

Exercise 38 Let the set A =
�
n+ 1

n� 2 = n 2 N; n � 3
�
:

1) Prove that A is nonempty and bounded.
2) Using the characterization of the supremum and in�mum, prove that

supA = 4 and inf A = 1:

3) Determine maxA and minA if they exist.
4) Deduce the supremum and the in�mum of the following sets :

B =

�
n+ 1

n� 2 +
1

2
= n 2 N; n � 3

�
;

D =

�
n+ 1

n� 2 , (�1)
n / n 2 N; n � 3

�
:
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Solution :
1) For n = 3; x3 =

3 + 1

3� 2 = 4 2 A; then A is nonempty.
Now, we will prove that A is bounded.

We �rst decompose the fraction
n+ 1

n� 2 in the following form:

n+ 1

n� 2 = a+
b

n� 2 ;

n+ 1

n� 2 =
a(n� 2) + b
n� 2 =

an� 2a+ b
n� 2 ;

by identi�cation, we obtain�
a = 1
�2a+ b = 1

=)
�
a = 1;
b = 3;

then
n+ 1

n� 2 = 1 +
3

n� 2 :

Using this decomposition, we will show that A is bounded.

n � 3 =) n� 2 � 1 =) 0 � 1

n� 2 � 1 =) 0 � 3

n� 2 � 3;

so

1 � 1 + 3

n� 2 � 4 =) 1 � n+ 1

n� 2 � 4; (1.1)

hence, A is bounded.

2) A is nonempty and bounded, so according to the axiom of the supremum
and
the axiom of the in�mum, supA and inf A exist.
Now, we will prove that supA = 4 :
From (1.1) 4 is an upper bound of A,
since 4 2 A and for all " > 0 we have 4 > 4� ";
so, from the characterization of the supremum, we deduce that supA = 4:

We will prove that inf A = 1 :
We check if 1 2 A :
We suppose that 1 2 A =) 9n 2 N; n � 3 = n+ 1

n� 2 = 1
=) n+ 1 = n� 2 =) 1 = �2 : absurd, then 1 =2 A:
We will prove that inf A = 1; using the characterization of the in�mum :

inf A = 1()
�
1�) 8x 2 A; x � 1;
2�) 8" > 0;9x0 2 A = x0 < 1 + ";
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or equivalently :

inf A = 1()

8><>:
1�) 8n 2 N; n � 3; n+ 1

n� 2 � 1;

2�) 8" > 0;9n0 2 N; n0 � 3 =
n0 + 1

n0 � 2
< 1 + ":

From (1.1) the condition 1�) is veri�ed.
Now, we wille prove the condition 2�) : let " > 0;

n0 + 1

n0 � 2
< 1 + "() 1 +

3

n0 � 2
< 1 + " >() 3

n0 � 2
< "() n0 >

3

"
+ 2:

Just take n0 =
�
3

"
+ 2

�
+ 1 =

�
3

"

�
+ 3 � 3;

therefore, inf A = 1:

3) supA = 4 2 A =) maxA = 4:
inf A = 1 =2 A =) minA does not exist.

4) B =

�
n+ 1

n� 2 +
1

2
= n 2 N; n � 3

�
=

�
n+ 1

n� 2 = n 2 N; n � 3
�
+

�
1

2

�
;

then, B = A+
�
1

2

�
:

By the properties of the supremum and the in�mum, B is nonempty and
bounded, supB et inf B exist and in addition we have

supB = sup

�
A+

�
1

2

��
= supA+ sup

�
1

2

�
= 4 +

1

2
=
9

2
;

inf B = inf

�
A+

�
1

2

��
= inf A+ inf

�
1

2

�
= 1 +

1

2
=
3

2
:

D =

�
n+ 1

n� 2 , (�1)
n / n 2 N; n � 3

�
;

D =

�
n+ 1

n� 2 / n 2 N; n � 3
�
[ f(�1)n / n 2 N; n � 3g ;

then, D = A [ f�1; 1g :
By the properties of the supremum and the in�mum, D is nonempty and
bounded, supD et infD exist and in addition we have

supD = sup(A [ f�1; 1g) = max(supA; sup f�1; 1g) = max(4; 1) = 4;
infD = inf(A [ f�1; 1g) = min(inf A; inf f�1; 1g) = min(1;�1) = �1:
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1.2 The set of complex numbers

1.2.1 Introduction

In R, a negative number cannot be the square of a real number. We construct
the set C, called the set of complex numbers, containing R, which equipped with
the laws "+" and "�" is a commutative �eld and such that any element can be
a square in C (even negative real numbers).

De�nition 39 A complex number is an ordered pair z = (x; y) such that x; y 2
R:
We write z = x+ iy where i2 = �1:
i = (0; 1) : is the pure imaginary number,
Re z = x : is the real part of z;
Im z = y : is the imaginary part of z:

Remark 40 - If y = 0; then z = x is a real number.
- If x = 0; then z = iy is a pure imaginary number.

1.2.2 Operations on complex numbers

Let z = x+ iy and z0 = x0 + iy0 2 C:
We de�ne on C; the addition by : z + z0 = x+ x0 + i(y + y0);
and the multiplication by : z:z0 = (x+iy)(x0+iy0) = (xx0�yy0)+i(xy0+x0y):
C; equipped with these two operations is a commutative �eld.

Remark 41 If z = x+ iy 6= 0, then
1

z
=

1

x+ iy
=

x� iy
(x+ iy)(x� iy) =

x� iy
x2 + y2

=
x

x2 + y2
+ i

�y
x2 + y2

:

1.2.3 The conjugate of a complex number

Let z = x+ iy 2 C:
The conjugate of z is the complex number z = x� iy:

Properties :
1)8z1; z2 2 C; z1 + z2 = z1 + z2:
2)8z1; z2 2 C; z1:z2 = z1:z2:
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1.2.4 The modulus of a complex number

The modulus of a complex number z = x+iy is a function from C to R+ de�ned
as follows

j:j : C �! R+
z �! jzj =

p
z:z =

p
x2 + y2 :

Remark 42 The modulus coincides with the absolute value when z is real.

Properties of modulus :
8z; z1; z2 2 C, we have the following properties :
1) jzj = 0() z = 0:

2) jz1:z2j = jz1j : jz2j :
3) jz1 + z2j � jz1j+ jz2j :

4) 8z 6= 0;
����1z
���� = 1

jzj :

Remark 43 We cannot order the set of complex numbers. So we cannot com-
pare or write inequalities between two complex numbers.

1.2.5 Euler�s formula

ei� = cos � + i sin �; � 2 R:

1.2.6 The complex exponential function

Let z = x+ iy 2 C:
We set by de�nition

ez = ex+iy = exeiy = ex(cos y + i sin y):

Properties :
1) 8z1; z2 2 C; ez1+z2 = ez1 :ez2 :
2) 8z 2 C; ez 6= 0 (ez:e�z = ez�:z = e0 = 1):
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1.2.7 Trigonometric form of a complex number

Let z = x+ iy 2 C such that z 6= 0;
jzj =

p
x2 + y2 = r:

The point M with coordinates (x; y) is called the image of the complex
number z.
z is the a¢ x of the point M .

cos � =
x

r
=

xp
x2 + y2

=
x

jzj ;

sin � =
y

r
=

yp
x2 + y2

=
y

jzj :

The number � is de�ned to within 2�.
� is called the argument of z and is denoted arg z.
Thus

x = jzj cos �;
y = jzj sin �:

Therefore

z = x+ iy = jzj cos � + i jzj sin � = jzj (cos � + i sin �) = jzj ei�:

If z = 0; so we have r = jzj = 0 and � any argument.

Conclusion :
8z 2 C;9(r; �) 2 R+ � R = z = r(cos � + i sin �) = rei�;
� := arg z and r = jzj :
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This representation is very useful for multiplication and division of complex
numbers.
Indeed, 8z1; z2 2 C; we have

z1:z2 = r1e
i�1 :r2e

i�2 = r1:r2e
i(�1+�2);

z1
z2
=
r1e

i�1

r2ei�2
=
r1
r2
ei(�1��2):

1.2.8 Moivre�s formula�
ei�
�n
= ein� = cosn� + i sinn�; 8� 2 R;8n 2 N:

Remark 44 We have
ei� = cos � + i sin �; � 2 R;
e�i� = cos � � i sin �;
from which we deduce the following formulas :

cos � =
ei� + e�i�

2
; � 2 R;

sin � =
ei� � e�i�

2i
:

1.3 Exercises

Exercise 45 Let f : R �! R be an increasing function on R and A a non-
empty and bounded above subset of R. We assume that f (A) is bounded above.
Prove that sup f(A) � f(sup A):

Solution :
Since A and f(A) are non-empty and bounded above subsets of R; then,

according to the supremum axiom, supA and sup f(A) exist. On the other
hand, we have 8x 2 A; x � supA:
Since the function f is increasing, we obtain

8x 2 A; f(x) � f(supA);

then, f(supA) is an upper bound of f(A) and since sup f(A) is the smallest
upper bound of f(A),
then we deduce that sup f(A) � f(supA):
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Exercise 46 Let the set A =
�
1

n
+
1

n2
; n 2 N�

�
:

1) Prove that A is non-empty and bounded.
2) Using the characterization of the supremum and in�mum, prove that
supA = 2 and inf A = 0:
3) Determine maxA and minA if they exist.
4) Deduce the supremum and in�mum of the set.

B =

�
n+ 1

n2
+ 2 = n 2 N�

�
.

Solution :

Let the set A =
�
1

n
+
1

n2
; n 2 N�

�
:

1) We prove that A is non-empty and bounded.
For n = 1; x1 = 2 2 A; then A 6= ;.
We prove that A is bounded. We have

8n 2 N�; 0 � 1

n
� 1;

8n 2 N�; 0 � 1

n2
� 1;

then, 8n 2 N�; 0 � 1

n
+
1

n2
� 2::::::(�)

hence, A is bounded.

2) We prove that supA = 2 and inf A = 0:

A is a subset of R non-empty and bounded, thus, according to the supremum
and in�mum axioms, supA et inf A exist.

Now, we prove that supA = 2:

From (�), 2 is an upper bound of A:

Moreover, we have: 8" > 0;9n = 1 2 N� = 1
n
+
1

n2
= 2 > 2� ";

then, according to the characterization of the supremum, supA = 2:

We prove that inf A = 0 : we use the characterization of the in�mum:

inf A = 0()

8><>:
1�)8n 2 N�; 1

n
+
1

n2
� 0;

2�)8" > 0;9n 2 N� = 1
n
+
1

n2
< 0 + ":

1�) It is satis�ed according to (�):
2�) Let " > 0, we have

1

n
+
1

n2
� 1

n
+
1

n
=
2

n
;

so it is enough that
2

n
< ";

2

n
< "() n >

2

"
;
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it is enough to take n =
�
2

"

�
+ 1; then inf A = 0:

3) We determine maxA and minA if they exist.

sup A = 2 2 A =) maxA = 2:

inf A = 0 =2 A (otherwise 9n 2 N� /
1

n
+
1

n2
=
n+ 1

n2
= 0 =) n = �1:

absurd), then minA does not exist.

4) We deduce the supremum and in�mum of the set

B =

�
n+ 1

n2
+ 2 = n 2 N�

�
:

B = A+ f2g : it is a bounded and non-empty set,

supB = supA+ sup f2g = 2 + 2 = 4;

inf B = inf A+ inf f2g) = 0 + 2 = 2:

Exercise 47 Let the set A =
�
3n+ 2

n+ 4
; n 2 N

�
:

1) Prove that A s non-empty and bounded.
2) Using the characterization of the supremum and in�mum, show that

supA = 3 and inf A =
1

2
:

3) Determine maxA and minA if they exist.
4) Deduce the supremum and in�mum of the set

B =

�
3n+ 2

n+ 4
; (�1)n = n 2 N

�
:

Solution :

Let the set A =
�
3n+ 2

n+ 4
; n 2 N

�
:

1) We prove that A is non-empty and bounded.

Pour n = 0; x0 =
1

2
2 A, then A is non-empty.

Now, we prove that A is bounded:

3n+ 2

n+ 4
= a+

b

n+ 4
= 3� 10

n+ 4
:

n 2 N =) n � 0 =) n+ 4 � 4 =) 0 � 1

n+ 4
� 1

4
;

1

2
� 3� 10

n+ 4
� 3 =) 1

2
� 3n+ 2

n+ 4
� 3::::::(�);

then, A is bounded.
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2) Using the characterization of the supremum and in�mum, show that

supA = 3 et inf A =
1

2
:

Since A 6= ; and bounded, thus according to the supremum and in�mum
axioms, supA et inf A exist.

We prove that inf A =
1

2
:

From (�); 1
2
is a lower bound of A:

Moreover 8" > 0;9n = 0 2 N = 3n+ 2
n+ 4

=
1

2
<
1

2
+ ":

Thus, according to the characterization of the in�mum, inf A =
1

2
:

We prove that supA = 3 using the characterization of the supremum

supA = 3()

8><>:
1�) 8n 2 N; 3n+ 2

n+ 4
� 3;

2�) 8" > 0;9n 2 N = 3n+ 2
n+ 4

> 3� ":

1�) Already proven in the �rst question.

2�) Let " > 0;

3n+ 2

n+ 4
> 3� "() n >

10

"
� 4;

it is enough to take n =
�����10" � 4

�����+ 1 2 N:
3) Determine maxA and minA if they exist.

inf A =
1

2
2 A; then minA = 1

2
:

supA = 3 =2 A (otherwise 3 2 A() 3n+ 2

n+ 4
= 3() 2 = 12 : absurd);

thus maxA does not exist.

4) Deduce the supremum and in�mum of the set :

B =

�
3n+ 2

n+ 4
; (�1)n = n 2 N

�
.

B = A [ f�1; 1g : it is a bounded and non-empty set.

supB = max(supA; sup f�1; 1g) = max(3; 1) = 3;

inf B = min(inf A; inf f�1; 1g) = min(1
2
;�1) = �1:
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Exercise 48 1) Determine the general form of the solutions of the equation :

zn = a , n 2 N� , a; z 2 C

2) Find all solutions to the equation z3 = 1:

Solution :
1) zn = a , n 2 N� , a; z 2 C:

Complex numbers are written in trigonometric form. :
z = �ei�, � = jzj and � = arg z;

a = rei�; r = jaj and � = arg a:

zn = a() (�ei�)n = rei� () �nein� = rei�;

then, �n = r and n� = �+ 2k�;

hence, � = n
p
r and � =

�+ 2k�

n
; k = 0; 1; ::::; (n� 1):

Therefore, the equation admits n solutions :

S =

�
zk = n

p
rei

�+2k�
n ; k = 0; 1; ::::; (n� 1)

�
:

2) We are looking for all the solutions of the equation z3 = 1:

1 = 1ei0 =) r = 1 and � = 0;

zk = e
i
2k�
3 ; k = 0; 1; 2:

then, the equation z3 = 1 admits three solutions :

z0 = e
i0 = 1;

z1 = e
i
2�
3 = cos

2�

3
+ i sin

2�

3
= �1

2
+ i

p
3

2
;

z2 = e
i
4�
3 = cos

4�

3
+ i sin

4�

3
= �1

2
� i
p
3

2
:

Exercise 49 1) Find the solutions to the equation : z3 = 1� i
p
3:

2) Solve in C the following equation : z2 � 2iz + 1� i = 0:

Solution :
1) The solutions of z3 = 1� i

p
3 :

z3 = 1� i
p
3() �3ei3� = 2e�i

�
3 ;

then, �3 = 2 and 3� = ��
3
+ 2k�;
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hence, � = 3
p
2 and � =

��
3 + 2k�

3
= ��

9
+
2k�

3
; k = 0; 1; 2:

S =

(
zk =

3
p
2e
i

�
��9 +

2k�
3

�
; k = 0; 1; 2:

)
:

Therefore, the equation z3 = 1� i
p
3 admits 3 solutions :

z0 =
3
p
2ei(�

�
9 ) = 3

p
2

�
cos

��
9
+ i sin

��
9

�
;

z1 =
3
p
2e
i
�
��9 +

2�
3

�
= 3
p
2

�
cos

5�

9
+ i sin

5�

9

�
;

z2 =
3
p
2e
i
�
��9 +

4�
3

�
= 3
p
2

�
cos

11�

9
+ i sin

11�

9

�
:

2) We solve the following equation in C : z2 � 2iz + 1� i = 0:

� = �8 + 4i = !2 = (x+ iy)2 = x2 � y2 + 2ixy;

j�8 + 4ij = jx+ iyj2 () x2 + y2 =
p
80 = 4

p
5;

by identi�cation, we obtain :8<:
x2 � y2 = �8
x2 + y2 = 4

p
5

2xy = 4
=)

�
x2 = �4 + 2

p
5

y2 = 4 + 2
p
5

=)
(
x = �

p
�4 + 2

p
5;

y = �
p
4 + 2

p
5:

Since xy = 2, then x and y are of the same sign,

then, ! =
p
�4 + 2

p
5 + i

p
4 + 2

p
5;

or ! = �
p
�4 + 2

p
5� i

p
4 + 2

p
5:

We choose ! =
p
�4 + 2

p
5 + i

p
4 + 2

p
5;

therefore, z1 =
2i+ !

2
and z2 =

2i� !
2

:



20 CHAPTER 1. REAL NUMBERS AND COMPLEX NUMBERS



Chapter 2

The numerical sequences

2.1 Introduction

De�nition 50 A sequence is a function from N to R

U : N �! R
n �! U(n) = Un:

We note the sequence of general term Un by (Un)n:

Remark 51 (Un)n = (Vn)n () (8n 2 N; Un = Vn):

2.1.1 Sequences given as a function of n

A sequence can be given as a function of n:

Example 52 : Un =
n+ 1

2n+ 3
; n 2 N;

U0 =
1

3
; U1 =

2

5
; U2 =

3

7
; :::::::

2.1.2 Recursive sequences

Recursive sequences are sequences where each term is de�ned based on previous
terms. We can de�ne a recursive sequence by giving the �rst term U0 = � and
the recurrence relation Un+1 = f(Un) for all n 2 N, where f is a function
from D � R in R assuming, of course, that f(D) � D for the sequence to be
well-de�ned.

21
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Example 53 8<: U0 = 1;

Un+1 =
Un + 2

2Un + 3
; 8n 2 N:

Un+1 = f(Un) =
Un + 2

2Un + 3
; avec f : D = [0;+1[�! R=f(x) =

x+ 2

2x+ 3

U1 =
U0 + 2

2U0 + 3
=
3

5
; :::::

2.1.3 Operations on sequences

The addition : (Un)n + (Vn)n = (Un + Vn)n:

The multiplication : (Un):(Vn) = (Un:Vn)n:

We note F (N;R) the set of numerical sequences.

F (N;R) equipped with addition and multiplication is a unital commutative
ring.

2.2 The di¤erent types of sequences

2.2.1 Monotonous sequences

- A sequence (Un)n is increasing () (8n 2 N; Un+1 � Un):
- A sequences (Un)n is strictly increasing () (8n 2 N; Un+1 > Un):
- A sequence (Un)n in decreasing () (8n 2 N; Un+1 � Un):
- A sequence (Un)n is strictly decreasing () (8n 2 N; Un+1 < Un):
- A sequence (Un)n is monotonous () (Un)n is increasing or decreasing.

- A sequence (Un)n is constant or stationary () (8n 2 N; Un+1 = Un):

2.2.2 The bounded sequences

- A sequence (Un)n is bounded above () (9M 2 R;8n 2 N; Un �M):
- A sequence (Un)n is bounded below () (9m 2 R;8n 2 N; Un � m):
- A sequence (Un)n is bounded () (Un)n is bounded above and bounded

below.

() (9M;m 2 R;8n 2 N;m � Un �M):
() (9� > 0;8n 2 N; jUnj � �):

B(N;R) is the set of bounded sequences, it is a subring of F (N;R):
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Example 54 Study the monotony of the sequence of general term Un =
n� 1
3n+ 2

;

n 2 N:

Un+1 � Un =
n

3n+ 5
� n� 1
3n+ 2

=
5

(3n+ 5)(3n+ 2)
> 0;

then, (Un)n is increasing.

Example 55 Study the monotony of the sequence of general term

Un =
1

n
; n 2 N�:

Un+1 � Un =
1

n+ 1
� 1

n
=

�1
(n+ 1)n

< 0;

hence, (Un)n is decreasing.

Example 56 Prove that the sequence of general term Un =
n

2n+ 1
; n 2 N is

bounded.

8n 2 N; 2n � 2n+ 1 =) 1

2n+ 1
� 1

2n
=) n

2n+ 1
� n

2n
=
1

2
;

then, 0 � n

2n+ 1
� 1

2
;

therefore, (Un)n is bounded.

Example 57 Let the sequence of general term Un = (�1)n n 2 N:

This sequence is neither increasing nor decreasing, it is an alternating se-
quence, but it is bounded because we have 8n 2 N; �1 � Un � 1:

2.3 The nature of sequences

2.3.1 Convergent sequences

De�nition 58 We say that the sequence (Un)n is convergent if there exists
` 2 R such that

8" > 0;9N 2 N;8n 2 N; (n � N =) jUn � `j < "):

We say that the sequence (Un)n converges to the limit ` and we write :
lim

n�!+1
Un = `:
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Example 59 Using the de�nition, show that lim
n�!+1

1

n
= 0:

lim
n�!+1

1

n
= 0() (8" > 0;9N 2 N�;8n 2 N�; (n � N =)

���� 1n � 0
���� < ")):���� 1n

���� < "() 1

n
< "() n >

1

"
;

which means that n �
�
1

"

�
+ 1 = N;

then, it is su¢ cient to take N =

�
1

"

�
+ 1 2 N�:

2.3.2 In�nite limits

lim
n�!+1

Un = +1() (8A > 0;9N 2 N;8n 2 N; (n � N =) Un > A)):

lim
n�!+1

Un = �1() (8A > 0;9N 2 N;8n 2 N; (n � N =) Un < �A)):

Example 60 1) lim
n�!+1

(2n+ 1) = +1:

2) lim
n�!+1

(�n+ 1) = �1:

2.3.3 Divergent sequences

A divergent sequence is a sequence that does not converge, meaning a divergent
sequence is one whose limit is in�nite or does not exist.

Example 61 Let the sequence of general term Un = (�1)n:

we have U2n = 1 and U2n+1 = �1; then lim
n�!+1

Un does not exist.

2.4 Main properties of sequences

Theorem 62 Every convergent numerical sequence has a unique limit.

Theorem 63 Every convergent numerical sequence is bounded.

Remark 64 The converse of the theorem is not true, that is, a bounded se-
quence is not necessarily convergent.
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Example 65 The sequence of general term Un = (�1)n is bounded but it is not
convergent.

Theorem 66 Let (Un)n be a bounded sequence and (Vn)n a sequence such that
lim

n�!+1
Vn = 0; then lim

n�!+1
Un:Vn = 0:

Example 67 lim
n�!+1

sinn

n+ 1
= 0 since sinn is bounded and lim

n�!+1

1

n+ 1
= 0:

Theorem 68 (Three Sequences Theorem)
Let (Vn)n and (Wn)n be two sequences that converge to the same limit ` and

let (Un)n a sequence such that for all n 2 N; Vn � Un � Wn, then the sequence

(Un)n converges to `:

Example 69 Prove that the sequence of general term Un =
cosn

n2 + 1
is conver-

gent and calculate its limit.

8n 2 N;�1 � cosn � 1 =) �1
n2 + 1

� cosn

n2 + 1
� 1

n2 + 1
;

lim
n�!+1

�1
n2 + 1

= lim
n�!+1

1

n2 + 1
= 0; so according to the three sequence

theorem, lim
n�!+1

cosn

n2 + 1
= 0:

Theorem 70 Every real number is the limit of a sequence of rational numbers,
i.e.

8x 2 R;9(qn) � Q = lim
n�!+1

qn = x

Indeed, let x 2 R;8n 2 N�; x� 1

n
< x;

according to the density theorem, there exists qn 2 Q = x�
1

n
< qn < x;

so according to the three sequence theorem we obtain lim
n�!+1

qn = x:

Theorem 71 - Any increasing and bounded above sequence converges towards
its spremum, i.e. lim

n�!+1
Un = ` = supE; où E = fUn 2 R=n 2 Ng :

- Any decreasing and bounded below sequence converges towards its in�mum�
i.e. lim

n�!+1
Un = ` = inf E:
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Example 72 Let the sequence of general term Un =
n� 1
3n+ 2

; n 2 N:

It has already been shown that (Un)n is increasing.

We also have
n� 1
3n+ 2

� n

3n
=
1

3
, then (Un)n is bounded above.

(Un)n being increasing and bounded above, therefore according to the previous

theorem, it converges towards its supremum, supE = lim
n�!+1

Un =
1

3
:

Theorem 73 Let (Un)n and (Vn)n be two sequences which converge respectively
to ` and `0, then the sequences (Un+Vn)n; (�Un)n; � 2 R and (Un:Vn)n converge

and we have

1) lim
n�!+1

(Un + Vn) = `+ `
0:

2) lim
n�!+1

(�Un) = �`:

3) lim
n�!+1

(Un:Vn) = `:`
0:

4) If `0 6= 0 and Vn 6= 0, then the sequence
�
Un
Vn

�
n

converges and lim
n�!+1

Un
Vn

=

`

`0
:

Theorem 74 Let ` 2 R:

- If lim
n�!+1

Un = ` and 8n 2 N; Un � 0; then ` � 0:

- If lim
n�!+1

Un = ` and 8n 2 N; Un � 0; then ` � 0:

Remark 75 - If (Un)n and (Vn)n are two convergente sequences such that for
every n 2 N; Un � Vn, then we have lim

n�!+1
Un � lim

n�!+1
Vn:

- If lim
n�!+1

Un = ` and 8n 2 N; Un > 0, then ` � 0:

Proposition 76 If lim
n�!+1

Un = `; then lim
n�!+1

jUnj = j`j

The converse is not true if ` 6= 0 and it is true if ` = 0:
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2.4.1 Arithmetic sequence and geometric sequence

arithmetic sequence of common di¤erence r :

U0; U1 = U0 + r; U1 = U0 + 2r; :::::::; Un = U0 + nr:

The partial sum of the terms of an arithmetic sequence:

Sn = U0 + U1 + ::::::+ Un = (U0 + Un)
(n+ 1)

2

Geometric sequence with common ratio q :

U0; U1 = U0q; U1 = U0q
2; :::::::; Un = U0q

n:

If U0 = 1, then Un = qn :

- If �1 < q < 1; then lim
n�!+1

qn = 0;

- If q = 1; then lim
n�!+1

qn = 1;

- If q = �1; then lim
n�!+1

qn does not exist,

- If q > 1; then lim
n�!+1

qn = +1;

- If q < �1; then lim
n�!+1

qn does not exist.

Conclusion :

(Un)n = (q
n)n converges () q 2]� 1; 1]:

The partial sum of the terms of a geometric sequence:

Sn = U0 + U1 + ::::::+ Un = U0

�
1� qn+1
1� q

�
; if q 6= 1:

If q = 1;then Sn = U0(n+ 1):

2.4.2 Study of recursive sequences

Let f : D � R �! R be a function, U0 2 D and Un+1 = f(Un);8n 2 N:
We assume that f(D) � D so that the sequence is well-de�ned.

If f is increasing, then (Un)n is monotonous :

- if U1 � U0 =) (Un)n is increasing,

- if U1 � U0 =) (Un)n is decreasing.

Study of convergence

We assume that f is monotonous and continuous on D. If the sequence
(Un)n converges to `; then ` veri�es the equation ` = f(`); so to �nd this limit,
we just need to solve this equation.
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2.4.3 Properties

1) lim
n�!+1

Un = +1;8n 2 N; Un � Vn =) lim
n�!+1

Vn = +1:

lim
n�!+1

Un = �1;8n 2 N; Vn � Un =) lim
n�!+1

Vn = �1:

2) lim
n�!+1

Un = +1; � > 0 =) lim
n�!+1

�Un = +1:

lim
n�!+1

Un = +1; � < 0 =) lim
n�!+1

�Un = �1:

3) lim
n�!+1

Un = �1;8n 2 N; Un 6= 0 =) lim
n�!+1

1

Un
= 0:

4) lim
n�!+1

Un = 0;8n 2 N; Un > 0 =) lim
n�!+1

1

Un
= +1:

5) lim
n�!+1

Un = +1^ lim
n�!+1

Vn = ` (or +1) =) lim
n�!+1

(Un + Vn) = +1:

6) lim
n�!+1

Un = +1^ lim
n�!+1

Vn = ` > 0 =) lim
n�!+1

Un:Vn = +1:

Undetermined cases

1) lim
n�!+1

Un = +1^ lim
n�!+1

Vn = �1 =) lim
n�!+1

(Un + Vn) =?

2) lim
n�!+1

Un = �1^ lim
n�!+1

Vn = 0 =) lim
n�!+1

(Un:Vn) =?

2.5 Subsequences (or extracted sequences)

De�nition 77 Let (Un)n be a numerical sequence and (nk)k a strictly increas-
ing sequence of integers. (Unk) is said to be a subsequence of (Un)n:

Example 78 Let the sequence of general term Un =
1

n
; n 2 N:

U2n =
1

2n
;

U2n+1 =
1

2n+ 1
;

U3n =
1

3n
;

(U2n); (U2n+1) and (U3n) are subsequences of (Un):

Theorem 79 If (Un) is a sequence converging to `, then every subsequence of
(Un) converges to the same limit `:

Remark 80 The converse of this theorem is not true, meaning that one can
extract a convergent subsequence from a divergent sequence.
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Example 81 Un = (�1)n diverges while its two subsequences (U2n = 1) and
(U2n+1 = �1) converge.

Theorem 82 The sequence (Un)n converges to ` () the subsequences (U2n)
and (U2n+1) converge to the same limit `:

Remark 83 If lim
n�!+1

U2n 6= lim
n�!+1

U2n+1, then the sequence (Un)n diverges.

Example 84 Let Un = (�1)n:
lim

n�!+1
U2n = 1 6= lim

n�!+1
U2n+1 = �1, then (Un)n diverges.

Theorem 85 (Bolzano-Weierstrass theorem)
Every bounded numerical sequence has a convergent subsequence.

Example 86 The sequence with general term Un = (�1)n diverges but it is
bounded. Its two subsequences (U2n = 1) and (U2n+1 = �1) converge.

2.6 Adjacent sequences

De�nition 87 Let (Un)n and (Vn)n be two numerical sequences. We say that
(Un)n and (Vn)n are two adjacent sequences if one is increasing and the other
decreasing and lim

n�!+1
(Un � Vn) = 0:

Theorem 88 If (Un)n and (Vn)n are two adjacent numerical sequences, then
they converge to the same limit.

2.7 The Cauchy sequences

De�nition 89 The numerical sequence (Un)n is said to be a Cauchy sequence
if

8" > 0;9N 2 N;8p; q 2 N; (p � N ^ q � N =) jUp � Uqj < ");
or

8" > 0;9N 2 N;8n; p 2 N; (n � N =) jUn+p � Unj < "):

Theorem 90 Let (Un)n be a convergente sequence, then (Un)n is a Cauchy
sequence.

Theorem 91 (Cauchy�s Criterion)
Let (Un)n be a Cauchy numerical sequence, then (Un)n is a convergente

sequence. We say that R is a complete space.

Remark 92 To show that a numerical sequence is convergent, it su¢ ces to
show that it is a Cauchy sequence.
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2.8 Exercises

Exercise 93 Let (Un) be a sequence de�ned by(
U1 = 1 , U2 = 2;

Un =
Un�1 + 2Un�2

3
, n � 3:

We set : 8n � 2 , Vn = Un � Un�1:

1) Prove by induction that : 8n � 2 , Vn =
�
�2
3

�n�2
:

2) Prove that the sequence de�ned by : 8n � 2 , Sn = V2 + V3 + :::::+ Vn
is convergent and calculate its limit.

3) Deduce that the sequence (Un) is convergent and calculate its limit.

Solution :
Let (Un) be the sequence de�ned by(

U1 = 1 , U2 = 2;

Un =
Un�1 + 2Un�2

3
, n � 3:

We set : 8n � 2 , Vn = Un � Un�1:

1) We prove by induction that : 8n � 2 , Vn =
�
�2
3

�n�2
:

For n = 2; V2 = U2 � U1 = 2� 1 = 1 =
�
�2
3

�2�2
: it is veri�ed.

We assume that the property is true up to order n and we show that it is

true for order (n+ 1):

We assume that Vn =
�
�2
3

�n�2
and we show that Vn+1 =

�
�2
3

�n�1
:

Vn+1 = Un+1 � Un =
Un + 2Un�1

3
� Un = �

2

3
(Un � Un�1);

Vn+1 = �
2

3
Vn = �

2

3

�
�2
3

�n�2
=

�
�2
3

�n�1
:

Thus, 8n � 2 , Vn =
�
�2
3

�n�2
:

2)We prove that the sequence de�ned by : 8n � 2 , Sn = V2+V3+ :::::+Vn
is convergent :
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Sn = V2 + V3 + :::::+ Vn = 1 +

�
�2
3

�
+

�
�2
3

�2
+ :::::+

�
�2
3

�n�2
;

It is the sum of (n� 1) consecutive terms of a geometric sequence with ratio
q =

�2
3
;

therefore, Sn =
1�

�
�2
3

�n�1
1�

�
�2
3

� =
3

5

 
1�

�
�2
3

�n�1!
:

Since

�����23
���� < 1, then lim

n�!+1

�
�2
3

�n�1
= 0;

hence, lim
n�!+1

Sn = lim
n�!+1

3

5

 
1�

�
�2
3

�n�1!
=
3

5
:

3) We deduce that the sequence (Un) is convergent :

Sn = V2 + V3 + ::::+ Vn = (U2 � U1) + (U3 � U2) + ::::+ (Un � Un�1);

Sn = Un � U1 = Un � 1; thus Un = Sn + 1:

Since (Sn) converge, then (Un) converge and we have

lim
n�!+1

Un = lim
n�!+1

(Sn + 1) =
3

5
+ 1 =

8

5
:

Exercise 94 Let (Un) be a sequence de�ned by8<: U0 = 1;

Un+1 =
1 + Un
3 + Un

, n 2 N:

1) Prove that 8n 2 N , 0 � Un � 1:

2) Prove that (Un) is monotonic.

3) Deduce that (Un) is convergent and calculate its limit `.

4) Let E = fUn = n 2 Ng. Determine supE and inf E:

Solution :
Let (Un) be the sequence de�ned by8<: U0 = 1;

Un+1 =
1 + Un
3 + Un

, n 2 N:

1) Prove by induction that 8n 2 N , 0 � Un � 1;
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for n = 0; 0 � U0 = 1 � 1 : it is veri�ed.

We assume that the property is true up to order n and we show that it is

true for order (n+ 1):

We assume that 0 � Un � 1 and we show that 0 � Un+1 � 1:

Un � 0 =) Un+1 =
1 + Un
3 + Un

� 0:

Un+1 � 1 =
1 + Un
3 + Un

� 1 = �2
Un + 3

� 0

then, 0 � Un+1 � 1:

Therefore, 8n 2 N; 0 � Un � 1:

2) We prove that (Un) is monotonic :

Un+1 =
1 + Un
3 + Un

= f(Un):

We set f(x) =
x+ 1

x+ 3
; x 2 D = [0;+1[ :

We have f(D) � D and f 0(x) =
2

(x+ 3)2
> 0;

then, f is increasing, hence (Un)n is monotonic.

Since U1 =
U0 + 1

U0 + 3
=
1

2
< Uo = 1, thus (Un)n is decreasing.

3) We deduce that (Un) is convergent :

(Un)n is decreasing and bounded below, then it converges to its in�mum,

i.e. lim
n�!+1

Un = ` = inf(Un):

We calculate the limit of (Un) :

` = lim
n�!+1

Un =) ` = f(`) =) ` =
`+ 1

`+ 3
() `2 + 2`� 1 = 0;

� = 8; `1 = �1 +
p
2 > 0 and `2 = �1�

p
2 < 0;

since 0 � Un � 1, then ` = �1 +
p
2:

4) Let E = fUn = n 2 Ng , we determine supE and inf E :

supE = U0 = 1; (since (Un)n is decreasing, 8n 2 N; U0 � Un and U0 2 E):

inf E = ` = �1 +
p
2:
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Exercise 95 Using adjacent sequences, show that the following sequence is con-
vergent :

Un = 1�
1

2
+
1

3
� :::::::::::+ (�1)

n�1

n
, n 2 N�:

Solution :
We show that (U2n) and (U2n+1) are adjacent :

i.e. one is increasing, the other is decreasing, and lim
n�!+1

(U2n+1�U2n) = 0:

� We study the monotonicity of (U2n) :

U2n+2�U2n =
�
1 + ::+ (�1)2n�1

2n + (�1)2n
2n+1 +

(�1)2n+1
2n+2

�
�
�
1 + ::+ (�1)2n�1

2n

�
;

U2n+2 � U2n = 1
2n+1 �

1
2n+2 =

1
(2n+1)(2n+2) > 0;

then (U2n) is increasing.

� We study the monotonicity of (U2n+1) :

U2n+3�U2n+1 =
�
1 + ::+ (�1)2n

2n+1 +
(�1)2n+1
2n+2 + (�1)2n+2

2n+3

�
�
�
1 + ::+ (�1)2n

2n+1

�
;

U2n+2 � U2n = � 1
2n+2 +

1
2n+3 =

�1
(2n+2)(2n+3) < 0;

then, (U2n+1) is decreasing.

� lim
n�!+1

(U2n+1 � U2n) = lim
n�!+1

1
2n+1 = 0:

hence, (U2n) and (U2n+1) are adjacent,

therefore, (U2n) and (U2n+1) converge to the same limit and so (Un) is
convergent.

Exercise 96 1) Let (Un) be the sequence de�ned by : Un =
nP
k=1

cos k

2k
, n 2 N�:

Prove that (Un) is a Cauchy sequence. What can we deduce?

2) Let (Un) the sequence de�ned by : Un = 1+
1

2
+
1

3
+ :::::::::::+

1

n
, n 2 N�:

Prove that (Un) is not a Cauchy sequence and deduce its limit.

Solution :
1) Let (Un) be the sequence de�ned by : Un =

nP
k=1

cos k

2k
, n 2 N�:

We prove that (Un) is a Cauchy sequence :

((Un) is a Cauchy sequence)()

(8" > 0;9N 2 N;8n; p 2 N; (n � N =) jUn+p � Unj < "):
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Let " > 0;

jUn+p � Unj =
����n+pP
k=1

cos k

2k
�

nP
k=1

cos k

2k

���� ;
jUn+p � Unj =

����cos(n+ 1)2n+1
+
cos(n+ 2)

2n+2
+ :::::+

cos(n+ p)

2n+p

���� ;
jUn+p � Unj �

����cos(n+ 1)2n+1

����+ ����cos(n+ 2)2n+2

����+ :::::+ ����cos(n+ p)2n+p

���� ;
jUn+p � Unj �

1

2n+1
+

1

2n+2
+:::::+

1

2n+p
=

1

2n+1

�
1 +

1

2
+
1

22
+ ::::+

1

2p�1

�
;

jUn+p � Unj �
1

2n+1

�
1 +

1

2
+
1

22
+ ::::+

1

2p�1

�
=

1

2n+1

 
1�

�
1
2

�p
1� 1

2

!
;

jUn+p � Unj �
1

2n
�
1�

�
1
2

�p�
<
1

2n
;

so it is enough to take
1

2n
< ":

1

2n
< "() 2n >

1

"
() n ln 2 > ln

1

"
() n >

ln
1
"

ln 2 ;

n >
ln
1
"

ln 2 =) n �
����� ln 1"ln 2

�����+ 1;
so it is enough to take N =

����� ln 1"ln 2

�����+ 1:
Then (Un) is a Cauchy sequence and since R is a complete space, then

(Un) is a convergent sequence.

2) Let (Un) the sequence de�ned by : Un = 1+
1

2
+
1

3
+ ::::+

1

n
, n 2 N�:

We prove that (Un) is not a Cauchy sequence :

((Un) is not a Cauchy sequence)()

(9" > 0;8N 2 N�;9p; q 2 N�; (p � N ^ q � N and jUp � Uqj � "):

Let N 2 N�; we set p = 2N � N and q = N � N;

jUp � Uqj = jU2N � UN j
�����1 + 12 + ::+ 1

N
+ ::+

1

2N

�
�
�
1 +

1

2
+ :::+

1

N

����� ;
jUp � Uqj =

1

N + 1
+

1

N + 2
+ :::+

1

2N
� 1

2N
+
1

2N
+ :::+

1

2N
= N

1

2N
=
1

2
;

jUp � Uqj �
1

2
= ";
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so, it is enough to take " =
1

2
:

therefore (Un) is not a Cauchy sequence, which implies that (Un) diverge.
Since (Un) is increasing, so it is not bounded (otherwise it would be
convergent), thus, lim

n�!+1
Un = +1:
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Chapter 3

Functions of one real
variable. Limit and
continuity

3.1 Generalities

3.1.1 De�nition of a function

De�nition 97 A numerical function on a set X is any mapping from X to the
set.R of real numbers. If X � R, we say that f is a numerical function of a real
variable.

f : X � R �! R
x �! f(x):

3.1.2 Domain of de�nition

Let f be a real function of a real variable. The domain of de�nition of the
function f is the set de�ned by

Df = fx 2 R = f(x) is de�nedg :

Example 98 1) f(x) = e
1

x2�1 ;

Df =
�
x 2 R=x2 � 1 6= 0

	
= fx 2 R=x 6= �1g = Rn f�1; 1g :

2) f(x) =
ln(x+ 1)

x
;

Df = fx 2 R=x+ 1 > 0 ^ x 6= 0g = fx 2 R=x > �1 ^ x 6= 0g =]�1; 0[[]0;+1[:

37
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3.1.3 Graph of a real function

Let f : X � R �! R, be a numerical function.de�ned on X:
The graph of the function f is a part of R2 de�ned by the following set

Gr(f) =
�
(x; f(x)) 2 R2 = x 2 X

	
� R2:

Example 99 f : R �! R = f(x) = x2

Gr(f) =
�
(x; x2) 2 R2 = x 2 R

	
: It is a parabola.

3.1.4 Algebraic operations on functions

- Let f and g be two real functions de�ned on X � R:

(f = g)() (8x 2 X; f(x) = g(x)):

- We note F (X;R) the set of functions from X to R;

F (X;R) = ff : X �! Rg :

- We de�ne two internal operations, addition and multiplication on F (X;R)
by

8x 2 X; (f + g)(x) = f(x) + g(x);

(f:g)(x) = f(x):g(x):

F (X;R) equipped with these two internal operations is a unitary commuta-
tive ring.

- We de�ne an external operation on F (X;R) by

8� 2 R;8x 2 X; (�f)(x) = �:f(x):

- F (X;R) equipped with addition and this external operation is a vector
space on R:

- We de�ne the order relation on F (X;R) by

(f � g)() (8x 2 X; f(x) � g(x)):

This relation is not a relation of total order.

Indeed, we take f : R �! R = f(x) = x2 and g : R �! R=g(x) = x:

We notice that f � g and g � f:
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3.1.5 Even, odd and periodic functions

Let f be a function de�ned on a symmetric interval I with respect to 0:

� f is even () 8x 2 I; f(�x) = f(x);

� f is odd () 8x 2 I; f(�x) = �f(x):

� A function f : R �! R is said to be periodic if

9P > 0;8x 2 R; f(x+ P ) = f(x):

We say that P is the period of f:

If P is a period of f , then every number of the form kP (k 2 N�) is a period
of f i.e., 8x 2 R; f(x+ kP ) = f(x):

Example 100 1) f(x) = cosx, x 2 R is an even and periodic function of period
P = 2�:

8x 2 R; cos(�x) = cos(x) and cos(x+ 2�) = cos(x):
2) f(x) = sinx, x 2 R is an odd and periodic function of period P = 2�:
8x 2 R; sin(�x) = � sin(x) and sin(x+ 2�) = sin(x):

Remark 101 1) The graph of an even function has an axis of symmetry (the
y-axis).

2) The graph of an odd function has a center of symmetry (the origin (O)).
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3.1.6 Bounded functions and monotonic functions

Let f : X � R �! R be a function.

� f is bounded above () (9M 2 R;8x 2 X; f(x) �M):

� f is bounded below () (9m 2 R;8x 2 X; f(x) � m):

� f is bounded () f is bounded above and bounded below.

� f is bounded () (9M;m 2 R;8x 2 X; m � f(x) �M):

� f is bounded () (9� > 0;8x 2 X; jf(x)j � �):

� f is increasing () (8x; y 2 X; x � y =) f(x) � f(y)):

� f is strictly increasing () (8x; y 2 X; x < y =) f(x) < f(y)):

� f is decreasing () (8x; y 2 X; x � y =) f(x) � f(y)):

� f is strictly decreasing () (8x; y 2 X; x < y =) f(x) > f(y)):

Example 102 1) f(x) = cosx, 8x 2 R; jcosxj � 1;

g(x) = sinx, 8x 2 R; jsinxj � 1;

cosx and sinx are bounded functions on R:

2) f(x) = x2; it is an even function but it is not bounded on R:

3) f(x) =
1

x
; it is an odd, unbounded function on R�:

3.2 Limit of a function at point x0
De�nition 103 Let x0 2 R: A part V � R is a neighborhood of x0 if it contains
an open interval containing x0:

De�nition 104 We say that a function f , de�ned in the neighborhood of x0
except maybe in x0; has a limit ` 2 R at point x0 if

8" > 0;9� > 0;8x 2 Df ; x 6= x0; (jx� x0j < � =) jf(x)� `j < ")

We write lim
x�!x0

f(x) = `
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Hence

lim
x�!x0

f(x) = `, (8" > 0;9� > 0;8x 2 X;x 6= x0; (jx� x0j < � =) jf(x)� `j < "))

Example 105 1) lim
x�!1

(2x+ 1) = 3

, (8" > 0;9� > 0;8x 2 R; x 6= 1; (jx� 1j < � =) j2x+ 1� 3j < ")) :
Let " > 0;

j2x+ 1� 3j < "() j2x� 2j < "() 2 jx� 1j < "() jx� 1j < "

2
= �;

then it su¢ ces to take � =
"

2
:

2) lim
x�!0

x2 = 0,
�
8" > 0;9� > 0;8x 2 R; x 6= 0; (jx� 0j < � =)

��x2 � 0�� < ")� :
Let " > 0;��x2�� < "() x2 < "()

p
x2 <

p
"() jxj <

p
" = �;

then it su¢ ces to take � =
p
":

3.2.1 The limit of f to the right and to the left of x0
Let f be a numerical function.

The limit of f to the right of x0: Let f be a function de�ned to the
right of x0;

lim
x

>�!x0

f(x) = `, (8" > 0;9� > 0;8x 2 Df ; (0 < x� x0 < � =) jf(x)� `j < ")) :

The limit of f to the left of x0 : Let f be a function de�ned to the left
of x0;

lim
x

<�!x0

f(x) = `, (8" > 0;9� > 0;8x 2 Df ; (�� < x� x0 < 0 =) jf(x)� `j < ")) :

Conclusion: Let f be a function de�ned to the right and to the left of x0;

lim
x�!x0

f(x) = `,
 
lim

x
>�!x0

f(x) = lim
x

<�!x0

f(x) = `

!
:

Example 106 Let f(x) =
jxj
x
; x0 = 0; Df = R�:

lim
x

>�!0

f(x) = lim
x

>�!0

=
x

x
= 1;

lim
x

<�!0

f(x) = lim
x

<�!0

=
�x
x
= �1;

then lim
x

>�!0

f(x) 6= lim
x

<�!0

f(x) and so lim
x�!x0

f(x) does not exist.
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3.2.2 Extension of the notion of limit

Case where x0 is in�nite

1) lim
x�!+1

f(x) = `() (8" > 0;9B > 0;8x 2 X; (x > B =) jf(x)� `j < ")) :

2) lim
x�!�1

f(x) = `() (8" > 0;9B > 0;8x 2 X; (x < �B =) jf(x)� `j < ")) :

3) lim
x�!+1

f(x) = +1() (8A > 0;9B > 0;8x 2 X; (x > B =) f(x) > A)) :

4) lim
x�!+1

f(x) = �1() (8A > 0;9B > 0;8x 2 X; (x > B =) f(x) < �A)) :

5) lim
x�!�1

f(x) = +1() (8A > 0;9B > 0;8x 2 X; (x < �B =) f(x) > A)) :

6) lim
x�!�1

f(x) = �1() (8A > 0;9B > 0;8x 2 X; (x < �B =) f(x) < �A)) :

Case where x0 is �nite and the limit in�nite

1) lim
x�!x0

f(x) = +1

() (8A > 0;9� > 0;8x 2 X;x 6= x0; (jx� x0j < � =) f(x) > A)) :

2) lim
x�!x0

f(x) = �1

() (8A > 0;9� > 0;8x 2 X;x 6= x0; (jx� x0j < � =) f(x) < �A)) :

3.3 Main theorems on limits

Theorem 107 (uniqueness of the limit)
If f admits a limit ` at the point x0; so this limit is unique.

Theorem 108 Let f : X �! R; x0 an adherent point of X and ` 2 R (or
` = �1) then, we have

lim
x�!x0

f(x) = `()
�
8(xn) � X;

�
lim

n�!+1
xn = x0 =) lim

n�!+1
f(xn) = `

��
:

Remark 109 We use this theorem to show that the limit of some functions
does not exist.

Example 110 Prove that lim
x�!0

sin
1

x
does not exist.

We take the sequence xn =
1

n� + �
2

; n 2 N;

lim
n�!+1

xn = lim
n�!+1

1

n� + �
2

= 0;
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lim
n�!+1

f(xn) = lim
n�!+1

sin(n� +
�

2
) = lim

n�!+1
(�1)n : does not exist.

Then lim
x�!0

sin
1

x
does not exist.

We show in the same way that lim
x�!0

cos
1

x
does not exist,

we take xn =
1

n�
; n 2 N�:

Theorem 111 Let f; g : X �! R and x0 an adherent point of X (or x0 =
�1). If g is bounded and lim

x�!x0
f(x) = 0; then lim

x�!x0
(f:g)(x) = 0:

Example 112 lim
x�!0

x2 sin
1

x
= 0:

Indeed, sin
1

x
is bounded and lim

x�!0
x2 = 0:

Theorem 113 Let f; g : X �! R and x0 an adherent point of X (or x0 =
�1):

If lim
x�!x0

f(x) = ` 2 R and lim
x�!x0

g(x) = `0 2 R, then

1) lim
x�!x0

(f + g)(x) = `+ `0:

2) lim
x�!x0

(f:g)(x) = `:`0:

3) lim
x�!x0

�f(x) = �`:

4) lim
x�!x0

1

f(x)
=
1

`
(8x 2 X; f(x) 6= 0 and ` 2 R�):

5) lim
x�!x0

f(x) = �1 and 8x 2 X; f(x) 6= 0 =) lim
x�!x0

1

f(x)
= 0:

Remark 114 If 8x 2 X; f(x) � g(x) then ` � `0:

Undetermined cases
1) +1�1 =?

2) 0:1 =?

3) 11 =?
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Example 115 1) lim
x�!a

x� a
x2 � a2 = lim

x�!a

x� a
(x� a)(x+ a) = lim

x�!a

1

x+ a
=
1

2a
:

2) lim
x�!+1

�
1 +

a

x

�x
; a 2 R;

lim
x�!+1

�
1 +

a

x

�x
= lim

x�!+1
e
x ln

�
1+
a

x

�
= e

lim
x�!+1

x ln

�
1+
a

x

�
= e

lim
x�!+1

a
ln

�
1+
a
x

�
a
x

= ea:

Remark 116 We recall that

1) h(x) = (f(x))g(x) = eg(x) ln(f(x));

Dh = fx 2 R=f(x) > 0g \Dg:

2) f(x) =
p
x; Df = [0;+1[ :

3) g(x) = 3
p
x; Dg = R:

Theorem 117 Let x0 an adherent point of X and the functions f; g; h : X �!
R such that 8x 2 X; g(x) � f(x) � h(x):
If lim
x�!x0

g(x) = lim
x�!x0

h(x) = `; then lim
x�!x0

f(x) = `:

3.4 Continuous functions

3.4.1 De�nition of the continuity of a function

De�nition 118 Let f : X �! R and x0 2 X = Df :

f is continuous at the point x0 () lim
x�!x0

f(x) = f(x0)

, (8" > 0;9� > 0;8x 2 X;x 6= x0; (jx� x0j < � =) jf(x)� f(x0)j < ")) :

Remark 119 1)We study the continuity of the function f at the point x0 which
belongs to the domain of de�nition of f i.e. x0 2 Df :

2) f is continuous on X if it is continuous at every point x0 2 X:

Example 120 1) f(x) = c; the constant function is continuous on R: Indeed,

8" > 0;9� > 0;8x 2 R; x 6= x0; (jx� x0j < � =) jf(x)� f(x0)j = jc� cj =
0 < "):

2) f(x) = x; the identity function is continuous on R. Indeed,

8" > 0;9� > 0;8x 2 R; x 6= x0; (jx� x0j < � =) jf(x)� f(x0)j =
jx� x0j < " = �):
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3) f(x) = sinx; is continuous on R: Indeed,
8" > 0;9� > 0;8x 2 R; x 6= x0; (jx� x0j < � =) jsinx� sinx0j < ");

We have jsinx� sinx0j =
����2 sin(x� x02

) cos(
x+ x0
2

)

���� � 2 ����sin(x� x02
)

���� �
2

����x� x02

���� � jx� x0j < " = �; since we have jsin yj � jyj ;8y 2 R:
3.4.2 Right and left continuity of the function at x0
Right-hand continuity of the function f at x0
f is right-continuous at x0 () lim

x
>�!x0

f(x) = f(x0)

, (8" > 0;9� > 0;8x 2 X; (0 < x� x0 < � =) jf(x)� f(x0)j < ")) :
Leftt-hand continuity of the function f at x0
f is left-continuous at x0 () lim

x
<�!x0

f(x) = f(x0)

, (8" > 0;9� > 0;8x 2 X; (�� < x� x0 < 0 =) jf(x)� f(x0)j < ")) :

Conclusion
f is continuous at point x0 () f is continuous from the right and from the

left at x0;

lim
x�!x0

f(x) = f(x0),
 
lim

x
>�!x0

f(x) = lim
x

<�!x0

f(x) = f(x0)

!
:

3.4.3 Theorems and properties of continuous functions

Theorem 121 Let f : X �! R and x0 2 X = Df :

f is continuous at point x0 ()�
8(xn) � X;

�
lim

n�!+1
xn = x0 =) lim

n�!+1
f(xn) = f(x0)

��
:

Theorem 122 Let f; g : X �! R and x0 2 X = Df = Dg.

If f and g are continuous at point x0; then

1) (f + g) is continuous at point x0:

2) (f:g) is continuous at point x0:

3) �f (� 2 R) is continuous at point x0:
4) jf j is continuous at point x0:

5)
f

g
is continuous at point x0 (if g(x) 6= 0):
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Remark 123 The function f(x) = x is continuous on R;

then g(x) = xn (n 2 N) is continuous on R;

therefore h(x) =
nP
i=0

aix
i is continuous on R:

Theorem 124 Let f : X �! R; g : Y �! R=f(X) � Y and x0 2 X. We
de�ne the function g � f : X �! R by
8x 2 X; (g � f)(x) = g(f(x)):

If f is continuous at x0 and g is continuous at f(x0), then g�f is continuous
at x0:

Example 125 Let the function de�ned by

f(x) =

8<:
jsinxj
x

; x 6= 0

1; x = 0

Study the continuity of f on Df :

Df = R

Continuity of f on R� :

f is continuous on R� because it is the composition and the product of con-
tinuous functions on R�:

Continuity of f at point x0 = 0 : f(0) = 1;

lim
x

>�!x0

f(x) = lim
x

>�!x0

sinx

x
= 1 = f(0);

lim
x

<�!x0

f(x) = lim
x

<�!x0

� sinx
x

= �1 6= f(0):

Conclusion :
f is not continuous at 0:

3.4.4 Main properties of continuous functions on an inter-
val

Theorem 126 Any continuous numerical function on a bounded closed interval
[a; b] is bounded.

Remark 127 This theorem is not true if the interval is not closed or is not
bounded.
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Example 128 The function f(x) =
1

x
is continuous on ]0; 1], but it is not

bounded on ]0; 1] :

Theorem 129 Any continuous numerical function on a bounded closed interval
[a; b] ; reaches its supremum and in�mum at least once,

i.e. there exist x1; x2 2 [a; b] such that f(x1) = sup f(x)
x2[a;b]

and f(x2) =

inf f(x)
x2[a;b]

:

Remark 130 This theorem is not true if the interval is not closed or is not
bounded.

Example 131 The function f(x) = x2 is continuous on ]�1; 1[ ;
it is bounded : 8x 2 ]�1; 1[ ; 0 � f(x) < 1;
it reaches its in�mum : inf f(x)

x2]�1;1[
= 0 = f(0) et 0 2 ]�1; 1[ ;

but it does not reach its supremum :

sup f(x)
x2]�1;1[

= 1 = f(1) = f(�1) but 1;�1 =2 ]�1; 1[ :

Theorem 132 (Intermediate Value Theorem)
Let f : [a; b] �! R be a continuous function such that f(a):f(b) < 0; then

there exists c 2 ]a; b[ = f(c) = 0:

Example 133 1) Prove that the equation x� 2+ lnx = 0 admits a solution in
]1;
p
e[ :

2) Prove that this solution is unique.

Solution
1) We set f(x) = x� 2 + lnx; Df = ]0;+1[ :
f is continuous on ]0;+1[ because it is the sum of continuous functions on

]0;+1[ ; especially f is continuous on [1;
p
e] : On the other hand, we have

f(1):f(
p
e) < 0: So according to the intermediate value theorem, there exists

c 2 ]1;
p
e[ = f(c) = 0:

2) To prove that the solution c is unique, it is enough to show that f is
strictly monotonic.

Since f 0(x) = 1 +
1

x
> 0;8x 2 Df ; then f is strictly increasing, so the point

c is unique.
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Theorem 134 (Generalized Intermediate Value Theorem)
Let I be any interval of R and let f : I �! R be a continuous function.

Let x1; x2 2 I such that x1 < x2; then 8y0 2 ]f(x1); f(x2)[ ;9x0 2 ]x1; x2[ =
y0 = f(x0):

Theorem 135 Let I be any interval of R and let f : I �! R be a continuous
function, then f(I) is an interval.

Remark 136 1) If f is a continuous and increasing function on [a; b] ; then
f([a; b]) = [f(a); f(b)] :

2) If f is a continuous and decreasing function on [a; b] ; then f([a; b]) =
[f(b); f(a)] :

3) In general f([a; b]) 6= [f(a); f(b)] :
4) If f is a continuous function on [a; b] ; then f([a; b]) = [m;M ] ;
where m = inf f(x)

x2[a;b]
and M = sup f(x)

x2[a;b]
.

3.4.5 Extension by continuity

The goal is to describe the extension of a function to a larger domain while
maintaining its continuity.

De�nition 137 Let f : X �! R and x0 =2 X = Df such that f is de�ned in
the neighborhood of x0. We assume that lim

x�!x0
f(x) = ` (` �nite).

Then, the function ef : X [ fx0g �! R de�ned by

ef(x) = ( f(x); x 2 X;

`; x = x0;

is continuous at x0:ef is said to be the extension of f by continuity at point x0:
Example 138 Let f(x) =

sinx

x
be the function de�ned on Df = R�:

Let x0 = 0 =2 Df :

lim
x�!0

f(x) = lim
x�!x0

sinx

x
= 1;

then f admits an extension by continuity at the point x0 = 0 and its extension
is ef : R �! R such that

ef(x) =
8<:

sinx

x
; x 6= 0;

1; x = 0:
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3.4.6 Uniform continuity of a function on an interval

De�nition 139 Let I be an interval and f : I �! R: We say that f is
uniformly continuous on I if

8" > 0;9� > 0;8x; x0 2 I; (jx� x0j < � =) jf(x)� f(x0)j < "):
Remark 140 Uniform continuity is a property of the function over the entire
interval I, whereas continuity can be de�ned at a point x0:

Example 141 1) f(x) = c; (c 2 R) is uniformly continuous on R:

2) f(x) = x; (x 2 R) is uniformly continuous on R:

3) f(x) = sinx; (x 2 R) is uniformly continuous on R:

Theorem 142 If f is uniformly continuous on I, then f is continuous on I:

Remark 143 The converse of this theorem is not true.

Example 144 The function f(x) =
1

x
is continuous on ]0; 1] ; but it is not

uniformly continuous on ]0; 1] :
Indeed, f is not uniformly continuous on ]0; 1]()
(9" > 0;8� > 0;9x; x0 2 ]0; 1] ; (jx� x0j < � and jf(x)� f(x0)j � ")):

Let � > 0; we set x =
1

n
2 ]0; 1] and x0 =

1

2n
2 ]0; 1] ;

we choose n 2 N� such that jx� x0j < �;

jx� x0j < �()
���� 1n � 1

2n

���� < �() 1

2n
< �() n >

1

2�
;

therefore, it is enough to take n =
�
1

2�

�
+ 1 2 N�:

jf(x)� f(x0)j = jn� 2nj = n � 1 = ";
so just take " = 1:

Thus f is not uniformly continuous on ]0; 1] :

Theorem 145 If f is continuous on a closed bounded interval [a; b] ; then f is
uniformly continuous on [a; b] :

Theorem 146 (Fixed point Theorem)
Let f : [a; b] �! [a; b] be a continuous function, then there exists x0 2 [a; b]

= f(x0) = x0:

x0 is called a �xed point of f; and it is the abscissa of the point of intersection
of the graph of f with the �rst bisector (y = x):
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3.4.7 Lipschitz function

De�nition 147 Let I be any interval and f : I �! R:

f is called Lipschitzian if

9k � 0;8x; x0 2 I; jf(x)� f(x0)j � k jx� x0j :

If 0 � k < 1 and f : I �! I; we say that f is contractive (or a contraction).

Remark 148 Any Lipschitz function f : I �! I is uniformly continuous on I:

Indeed, let " > 0;

8x; x0 2 I; jf(x)� f(x0)j � k jx� x0j � (k + 1) jx� x0j < " =)

jx� x0j < "

k + 1
= �;

therefore, it is enough to take � =
"

k + 1
;

So f is uniformly continuous on I:

Theorem 149 Let f : [a; b] �! [a; b] be a contractive function, then f admits
a unique �xed point.
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3.4.8 Properties of monotonic functions on an interval

Theorem 150 Let I be any interval and f : I �! R a monotonic function on
I; then

f is continuous on I () f(I) is an interval.

Theorem 151 Let X � R and f a strictly monotonic fonction on X; then the
function f : X �! f(X) is bijective and the inverse function f�1 : f(X) �! X
is strictly monotonic on f(X):

Theorem 152 (Inverse Function Theorem)
Let I be any interval and f : I �! f(I) a continuous and strictly increas-

ing function (or strictly decreasing, respectively). Then the inverse function
f�1 : f(I) �! I is continuous and strictly increasing (or strictly decreasing,
respectively).

3.5 Exercises

Exercise 153 Let the function dé�ned by :

f(x) =

8>>>><>>>>:
0 ; x 2 ]�1; 2] ;

a� b

x
; x 2 ]2; 4] ;

1 ; x 2 ]4;+1[ :
Determine a and b so that f is continuous on R:

Solution :
f is continuous on ]�1; 2[ because it is a constant function.

f is continuous on ]2; 4[ because it is the sum and the product of continuous
functions on ]2; 4[ :

f is continuous on ]4;+1[ because it is a constant function.

The continuity at x0 = 2 : f(2) = 0;

lim
x

<�!2

f(x) = lim
x

>�!2

f(x) = f(2)() a� b

2
= 0:

The continuity at x0 = 4 : f(4) = a�
b

4
;

lim
x

<�!4

f(x) = lim
x

>�!4

f(x) = f(4)() a� b

4
= 1:

We solve the following system :
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a� b

2
= 0;

a� b

4
= 1:

=)

8<: a = 2;

b = 4:

Exercise 154 Let f : [a; b] �! R be a continuous function such that

f(a):f(b) < 0:

Prove that 8x; y 2 [a; b] ;9z 2 [a; b] = f(z) = f(x) + f(y)

3
:

Solution :
f : [a; b] �! R is a continuous function such that f(a):f(b) < 0;

therefore, by the intermediate value theorem, 9c 2 ]a; b[ = f(c) = 0:

Furthermore, f is continuous on a closed and bounded interval, so it is
bounded and,

moreover, it attains its bounds,

i.e. 9x1; x2 2 [a; b] = f(x1) = inf
x2[a;b]

f(x) = m and f(x2) = sup
x2[a;b]

f(x) =M:

x 2 [a; b] =) m � f(x) �M;

y 2 [a; b] =) m � f(y) �M;

c 2 ]a; b[ =) m � f(c) = 0 �M:

By adding the three inequalities, we obtain

3m � f(x) + f(y) � 3M =) m � f(x) + f(y)

3
�M;

therefore, by the generalized intermediate value theorem, 9 z 2 [a; b] = f(z) =
f(x) + f(y)

3
:

Exercise 155 1) Using the intermediate value theorem, show that the equation
: xesin x = cosx admit a solution in ]0;

�

2
[:

2) Prove that this solution is unique.
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Solution :
1) xesin x = cosx() xesin x � cosx = 0:
We set f(x) = xesin x � cosx;

f is continuous on
h
0;
�

2

i
:

f(0) = �1 < 0 and f(�
2
) =

�

2
e > 0;

therefore, by the intermediate value theorem, 9c 2]0; �
2
[ = f(c) = 0:

2) Let�s show that this solution is unique :

It is enough to show that the function is strictly monotone.

f 0(x) = esin x + x cosx:esin x + sinx > 0 on
h
0;
�

2

i
;

then f is strictly increasing, hence the point c is unique.

Exercise 156 Let the function be de�ned by f(x) =
1� cosx
x2

:

1) Determine the domain of de�nition Df of the function f:

2) Study the continuity of f on Df :

3) Study the extension by continuity of f on R:

Solution :
Let the function de�nie by f(x) =

1� cosx
x2

:

1) Df = R�:

2) f is continuous on R� because it is the sum and the product of continuous
functions on R�:

3) The extension by continuity of f on R : 0 =2 Df ;

lim
x�!0

f(x) = lim
x�!0

1� cosx
x2

= lim
x�!0

(1� cosx)(1 + cosx)
x2(1 + cosx)

= lim
x�!0

1� cos2 x
x2(1 + cosx)

;

lim
x�!0

f(x) = lim
x�!0

sin2 x

x2(1 + cosx)
= lim

x�!0

�
sinx

x

�2
1

(1 + cosx)
=
1

2
;

since lim
x�!0

sinx

x
= 1:

Therefore f admits an extension by continuity at 0, and its extension is

ef(x) =
8><>:

1� cosx
x2

; x 6= 0;

1

2
; x = 0:
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Chapter 4

Derivability of functions of
one real variable

4.1 Generalities

4.1.1 De�nition of the derivability

De�nition 157 Let I be an interval, x0 2 I and f : I �! R a real function.

We say that f is derivable at the point x0 if lim
x�!x0

f(x)� f(x0)
x� x0

exists (�-

nite).
This limit is called the derivative of f at the point x0, it is unique and is

denoted by f 0(x0) or
df

dx
(x0):

Remark 158 - The function f is derivable on I if it is derivable at every point
x0 2 I:
- The function f 0 : I �! R is called the derivative of the function f:

- We can also write:
f(x)� f(x0)
x� x0

= f 0(x0) + "(x), with lim
x�!x0

"(x) = 0;

then, f(x)� f(x0) = (f 0(x0) + "(x))(x� x0);
so we deduce that f(x) = f(x0) + f 0(x0)(x� x0) + (x� x0)"(x):
- If we set h = x� x0;
when x tends to x0, then h tends to 0;

we get, f 0(x0) = lim
x�!x0

f(x)� f(x0)
x� x0

= lim
h�!0

f(x0 + h)� f(x0)
h

;

and we also obtain

55
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f(x0 + h)� f(x0) = hf 0(x0) + h"(h), with lim
h�!0

"(h) = 0:

- then f is derivable at the point x0 if and only if there exists ` 2 R and a
function " such that

8x0 + h 2 I; f(x0 + h) = f(x0) + h`+ h"(h), with lim
h�!0

"(h) = 0;

i.e. f(x) = f(x0) + (x� x0)`+ (x� x0)"(x), with lim
x�!x0

"(x) = 0:

Example 159 1) f(x) = c;8x 2 R;

8x0 2 R; f 0(x0) = lim
x�!x0

f(x)� f(x0)
x� x0

= 0;

then 8x 2 R; f 0(x) = 0:

2) f(x) = x; 8x 2 R;

8x0 2 R; f 0(x0) = lim
x�!x0

f(x)� f(x0)
x� x0

= lim
x�!x0

x� x0
x� x0

= 1;

so 8x 2 R; f 0(x) = 1:

3) f(x) = x2;8x 2 R;

f 0(x0) = lim
x�!x0

f(x)� f(x0)
x� x0

= lim
x�!x0

x2 � x20
x� x0

= lim
x�!x0

(x� x0)(x+ x0)
x� x0

=

2x0;

hence 8x 2 R; f 0(x) = 2x:

4) f(x) = sinx;8x 2 R;

f 0(x0) = lim
x�!x0

f(x)� f(x0)
x� x0

= lim
x�!x0

sinx� sinx0
x� x0

= lim
x�!x0

2 sin(x�x02 ) cos(x+x02 )

x� x0
;

= lim
x�!x0

sin(x�x02 )
x�x0
2

cos(x+x02 ) = cosx0;

therefore 8x 2 R; f 0(x) = cosx:

4.1.2 Geometric interpretation

Let f be a derivable function at the point x0:

The line with equation : (T ) : y = f(x0) + f
0(x0)(x � x0), is called the

tangent to the graph of f at the point M0(x0; f(x0)):

This line intersects the graph at a single point M0(x0; f(x0)):

tan � =
f(x)� f(x0)
x� x0

.
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D is the line that passes through the points M0(x0; f(x0)) and M(x; f(x)):

Then tan � is the slope of the line D (or the slope coe¢ cient of D).

When x tends to x0, we notice that the line D tends to the line (T ) and
therefore, tan � tends to the slope of (T ) which is the derivative of f at the point
x0:

Then we have f 0(x0) = tan�;

where � denotes the angle formed by the axis (OX) and the tangent to the
curve of f at the point M0:

Conclusion
The derivative of f at x0is the slope of the tangent to the curve of f at the

point M0(x0; f(x0)):

Remark 160 If f 0(x0) = 0;then tan� = 0 =) � = 0;

so (T ) the tangent to the curve of f is horizontal at the point M0(x0; f(x0)):

4.1.3 Right and left derivability of the function at x0
Let f : I �! R be a function and x0 2 I:

f is derivable from the right at x0 if f 0d(x0) = lim
x

>�!x0

f(x)� f(x0)
x� x0

exists

(�nite).

f is derivable from the left at x0 if f 0g(x0) = lim
x

<�!x0

f(x)� f(x0)
x� x0

exists (�-

nite).



58CHAPTER 4. DERIVABILITY OF FUNCTIONS OF ONE REAL VARIABLE

Conclusion
f is derivable at x0 () f is derivable from the right and from the left at

x0 and f 0d(x0) = f
0
g(x0)

Example 161 Let the function f(x) = jxj ;8x 2 R:
We study the derivability of f at the point x0 = 0 :

f 0d(0) = lim
x

>�!0

f(x)� f(0)
x� 0 = lim

x
>�!0

jxj
x
= lim

x
>�!0

x

x
= 1;

f 0g(0) = lim
x

<�!0

f(x)� f(0)
x� 0 = lim

x
<�!0

jxj
x
= lim

x
<�!0

�x
x
= �1;

since f 0d(0) 6= f 0g(0); then f is not derivable at x0 = 0:

Example 162 Let the function f(x) =
p
x; 8x � 0:

We study the derivability of f at the point x0 = 0 :

f 0d(0) = lim
x

>�!0

f(x)� f(0)
x� 0 = lim

x
>�!0

p
x

x
= lim

x
>�!0

1p
x
= +1;

then f is not derivable at the point x0 = 0:

4.2 Properties of derivable functions

4.2.1 Derivability and continuity

Theorem 163 Let f : I �! R be a function and x0 2 I:
If f is derivable at x0, then f is continuous at x0:
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Remark 164 1) The contrapositive of this implication :

If f is not continuous at x0 =) f is not derivable at x0:

2) The converse of this theorem is not true.

Example 165 The function f(x) = jxj is continuous at 0, but it is not derivable
at 0:

4.2.2 Operations on derivable fonctions

Theorem 166 Let f; g : I �! R be two derivable functions at x0 2 I; then

1) (f + g) is derivable at x0 and (f + g)0(x0) = f 0(x0) + g0(x0):

2) 8� 2 R; �f is derivable at x0 and (�f)0(x0) = �f 0(x0):

3) (f:g) is derivable at x0 and (f:g)0(x0) = (f 0:g)(x0) + (f:g0)(x0):

4) If g(x0) 6= 0;
f

g
is derivable at x0 and

�
f

g

�0
(x0) =

f 0(x0)g(x0)� f(x0)g0(x0)
g2(x0)

:

4.2.3 Derivative of a composed function

Theorem 167 Let f a function de�ned on the interval I, g a function de�ned
on the interval J such that f(I) � J and x0 2 I: If f is derivable at x0 and g
derivable at f(x0), then (g � f) is derivable at x0 and we have

(g � f)0(x0) = f 0(x0):g0(f(x0)):

Example 168 1) f(x) = sin(x2) =) f 0(x) = 2x cos(x2); 8x 2 R:

2) f(x) = ln
p
x =) f 0(x) =

1

2
p
x

1p
x
=
1

2x
; 8x > 0:

Remark 169 - The derivative of an even function is an odd function.

Indeed, let f be an even function =) f(�x) = f(x) =) �f 0(�x) =
f 0(x) =) f 0 is odd.

- The derivative of an odd function is an even function.
Indeed, let f be an odd function =) f(�x) = �f(x) =) �f 0(�x) =

�f 0(x) =) f 0 is even.

Example 170 The function f(x) = sinx is odd =) f 0(x) = cosx is even.
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4.2.4 Derivative of the reciprocal function

Theorem 171 Let f be a bijective and continuous function from an interval I
to an interval J and derivable at x0 2 I such that f 0(x0) 6= 0:

Then the reciprocal function f�1 : J �! I is derivable at y0 = f(x0) and we
have �

f�1
�0
(f(x0)) =

1

f 0(x0)

Example 172 The function tanx :
i
��
2
;
�

2

h
�! R is a bijective function,

Thus, it has a reciprocal function : arctanx : R �!
i
��
2
;
�

2

h
:

8x 2 R; (arctanx)0 = 1

(tan y)0
=

1

1 + tan2 y
=

1

1 + x2
; with x = tan y

4.2.5 Derivatives of order higher than 1

- If f is derivable, its derivative f 0 is called the �rst derivative of f:

- If f 0 is derivable, its derivative f 00 is called the second derivative (or of
order 2) of f:

- We de�ne by recurrence the successive derivatives of f . Thus f (n) is the
nth derivative or the nth-order derivative of f , it is the derivative of the function

f (n�1); i.e. f (n)(x) = (f (n�1))0(x):

Convention : f (0) = f:

Example 173 We show by recurrence that :

8n 2 N; (sinx)(n) = sin(x+ n�
2
)

Indeed,
for n = 0 : (sinx)(0) = sinx = sin(x+ 0�2 );

for n = 1 : (sinx)(1) = cosx = sin(x+ �
2 ):

We assume that the property is true up to order n and we show that it is
true for order (n+ 1):

We assume that (sinx)(n) = sin(x + n�2 ); and we show that (sinx)
(n+1) =

sin(x+ (n+ 1)�2 )?
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(sinx)(n+1) =
�
(sinx)(n)

�0
= (sin(x+ n�2 ))

0 = cos(x+ n�2 )

= sin(x+ n�2 +
�
2 ) = sin(x+ (n+ 1)

�
2 ):

Then, 8n 2 N; (sinx)(n) = sin(x+ n�2 ):

We show in the same way that

8n 2 N; (cosx)(n) = cos(x+ n�
2
)

4.2.6 Functions of class Cn

De�nition 174 Let f : I �! R be a function and n 2 N�: We say that f is
of class Cn (or n times continuously derivable) if it is n times derivable and if

f (n) is continuous on I:

Remark 175 Cn (I) : it is the set of functions of class Cn on I:

C1 (I) : It is the set of functions that are in�nitely derivable on I:

C0 (I) = C(I) : it is the set of continuous functions on I:

Example 176 1) f(x) = x2;

f 0(x) = 2x; f 00(x) = 2; f (3)(x) = 0; ::::::; then f 2 C1 (R):
2) f(x) = sinx;

f (n)(x) = sin(x+ n�2 ) is continuous, then f 2 C
1 (R):

4.2.7 Leibniz Formula

Theorem 177 Let f; g : I �! R and x0 2 I such that f (n)(x0) and g(n)(x0)
exist (n 2 N�); then the function f:g admits a nth derivative at point x0; and
we have

(f:g)(n)(x0) =

nX
k=0

Cknf
(k)(x0):g

(n�k)(x0); where Ckn =
n!

k!(n� k)! :

Example 178 Calculate the nth derivative of the function f(x) = x2 sinx:

f (n)(x) = (x2 sinx)(n) =
nP
k=0

Ckn(x
2)(k):(sinx)(n�k) = C0n(x

2):(sinx)(n)

+C1n(x
2)0:(sinx)(n�1) + C2n(x

2)00:(sinx)(n�2) + 0 + 0:::

= x2 sin(x+n�2 )+n2x sin(x+(n�1)
�
2 )+n(n�1) sin(x+(n�2)

�
2 ):
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4.3 Main theorems

4.3.1 Maximum and minimum

De�nition 179 (Local maximum)
Let f : I �! R and x0 2 I:

We say that f admits a local maximum at x0 if

9� > 0;8x 2 I; jx� x0j < � =) f(x) � f(x0):

De�nition 180 (Local Minimum)
Let f : I �! R and x0 2 I:

We say that f admits a local minimum at x0 if

9� > 0;8x 2 I; jx� x0j < � =) f(x) � f(x0):

In both cases, we say that f admits a local extremum at the point x0:

Theorem 181 Let f : I �! R and x0 2 I:

If f admits an extremum (maximum or minimum) at the point x0 and if
f 0(x0) exists, then f 0(x0) = 0:

Remark 182 A function can admit an extremum at x0, without being derivable
at x0:
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Example 183 f(x) = jxj admits a minimum at x0 = 0, whereas it is not
derivable at x0 = 0:

Remark 184 The converse of the theorem is false.

Example 185 Let the function f(x) = x3; 8x 2 R:
We have f 0(0) = 0; but f doesn�t admit an extremum at 0:

4.3.2 Rolle�s Theorem

Theorem 186 Let f : [a; b] �! R be the function such that

1) f is continuous on [a; b] ;

2) f is derivable on ]a; b[ ;

3) f(a) = f(b);

then, there exists c 2 ]a; b[ = f 0(c) = 0:

Geometric interpretation of Rolle�s Theorem :

9c 2 ]a; b[ = f 0(c) = 0; so there exists at least one tangent to the horizontal
curve of f in the interval ]a; b[ :

Example 187 The function f(x) = x2 , x 2 [�1; 1], veri�es all the conditions
of Rolle�s Theorem, so there exists c 2 ]�1; 1[ = f 0(c) = 0:



64CHAPTER 4. DERIVABILITY OF FUNCTIONS OF ONE REAL VARIABLE

Remark 188 All the assumptions of Rolle�s Theorem are essential for the ap-
plication of Rolle�s Theorem.

Example 189 The function f(x) = jxj veri�es all the conditions of Rolle�s
theorem except the derivability in 0: We notice that there is no point c 2 ]�1; 1[
such that f 0(c) = 0:

Remark 190 The converse of Rolle�s Theorem is not true.

Example 191 The function f(x) = x3 veri�es f 0(0) = 0; while it does not
satisfy all the hypotheses of Rolle�s Theorem on [�1; 1] (f(1) 6= f(�1)):

4.3.3 The Mean Value Theorem (M.V.T)

Theorem 192 Let f : [a; b] �! R be the function such that
1) f is continuous on [a; b] ;

2) f is derivable on ]a; b[ ;

then there exists c 2 ]a; b[ = f(b)� f(a) = (b� a)f 0(c):

Geometric interpretation of the Mean Value Theorem (M.V.T) :

We have
f(b)� f(a)
b� a = f 0(c);

then f 0(c) is the slope of the line (AB) passing through the points A(a; f(a))
and B(b; f(b)),

from where there exists a point C(c; f(c)) such that (T ) the tangent to the
curve of f at this point is parallel to the line (AB); because (T ) and (AB) have
the same slope.
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Corollary 193 Let I be any interval and f : I �! R be a derivable function
on I and let x1; x2 2 I with x1 < x2: Then, there exists c 2 ]x1; x2[ such that

f(x2)� f(x1) = (x2 � x1)f 0(c):

Another formulation of the Mean Value Theorem (M.V.T).
We set h = b� a > 0;

c 2 ]a; b[ =) c = a+ (c� a) = a+ (c� a)
h

h = a+ �h, with � 2 ]0; 1[ :

With this notation, the Mean Value Theorem formula can be written as :

9� 2 ]0; 1[ = f(a+ h)� f(a) = hf 0(a+ �h):

Example 194 Prove that 8x 2
h
0;
�

2

h
; tanx � x:

- If x = 0; tan 0 = 0 � 0;

- If x 2
i
0;
�

2

h
; we set f(t) = tan t; and [a; b] = [0; x] ; we have

f is continuous on [0; x] and derivable on ]0; x[, then according to the Mean
Value Theorem (M.V.T), there exists c 2 ]0; x[ = f(x)� f(0) = (x� 0)f 0(c);

then, tanx� tan 0 = x(1 + tan2 c) � x =) tanx � x:

Hence 8x 2
h
0;
�

2

h
; tanx � x:
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4.3.4 Application of the Mean Value Theorem (M.V.T) to
the variations of functions

Proposition 195 Let f : I �! R be a continuous and derivable function on I
(any interval). Then we have

1) 8x 2 I; f 0(x) = 0() f is a constant function.

2) 8x 2 I; f 0(x) � 0() f is an increasing fonction.

3) 8x 2 I; f 0(x) � 0() f is a decreasing function.

4.3.5 Generalized Mean Value Theorem (G.M.V.T)

Theorem 196 Let f; g : [a; b] �! R be two functions continuous on [a; b] and
derivable on ]a; b[ : If 8x 2 ]a; b[ ; g0(x) 6= 0; then we have

9c 2 ]a; b[ = f(b)� f(a)
g(b)� g(a) =

f 0c)

g0(c)
:

Remark 197 From this theorem, we deduce L�Hôpital�s rule, which allows us

to compute limits of the form
0

0
or
1
1 :

4.3.6 L�Hôpital�s rule

Theorem 198 Let I be any interval of R; x0 2 I and two functions f; g : I �!
R continuous on I and derivable on I r fx0g:
If f(x0) = g(x0) = 0 and 8x 2 I r fx0g; g0(x) 6= 0; then

if lim
x�!x0

f 0(x)

g0(x)
= ` (�nite or in�nite), then lim

x�!x0

f(x)

g(x)
= `:

Remark 199 L�Hôpital�s rule can be applied in the following cases:

1) x0 is an adherent point of I.

2) The hypothesis f(x0) = g(x0) = 0 is replaced by lim
x�!x0

f(x) = lim
x�!x0

g(x) =

0:

3) In the case x0 =1; lim
x�!x0

f(x) = lim
x�!x0

g(x) =1:

Example 200 Calculate lim
x�!0

1� cosx
x2

:

Since the assumptions are satis�ed and lim
x�!0

f 0(x)

g0(x)
= lim

x�!0

(1� cosx)0
(x2)0

=

lim
x�!0

sinx

2x
=
1

2
; then lim

x�!0

1� cosx
x2

=
1

2
:
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Remark 201 The converse of L�Hôpital�s rule is not true, i.e. if lim
x�!x0

f(x)

g(x)

exist, this does not imply that lim
x�!x0

f 0(x)

g0(x)
exists.

Example 202 Let the functions de�ned by

f(x) =

(
x2 sin

1

x
; x 6= 0

0; x = 0
et g(x) = sinx

Example 203 lim
x�!0

f(x)

g(x)
= lim

x�!0

x2 sin
1

x
sinx

= lim
x�!0

� x

sinx

��
x sin

1

x

�
= 1:0 =

0;

while lim
x�!0

f 0(x)

g0(x)
= lim

x�!0

1

cosx
(2x sin

1

x
� cos 1

x
) : doesn�t exist,

because lim
x�!0

cos
1

x
doesn�t exist.

4.4 Taylor�s formula

A function f continuous son[a; b] and derivable at x0 2 ]a; b[ can be written in
the vicinity of x0 in the following form :

f(x) = f(x0) + f
0(x0)(x� x0) + (x� x0)"(x) = lim

x�!x0
"(x) = 0:

This means that f can be approximated by the polynomial of degree 1 :

P (x) = f(x0) + f
0(x0)(x� x0);

R(x) = (x� x0)"(x) : it is the error made by this approximation.

Taylor�s formula generalizes this result by showing that functions that are
n-times deriviable can be approximated in the vicinity of x0 by polynomials of
degree n; i.e.

f(x) = f(x0)+
f 0(x0)

1!
(x�x0)+

f 00(x0)

2!
(x�x0)2+:::::::+

f (n)(x0)

n!
(x�x0)n+Rn(x)

where Pn(x) = f(x0)+
f 0(x0)
1! (x�x0)+ f 00(x0)

2! (x�x0)2+:::::::+ f(n)(x0)
n! (x�x0)n

is the polynomial of degree that approximates f with an accuracy equal to
Rn(x).

The error Rn(x) is called the remainder of order n and has several forms
depending on the derivability conditions imposed on f; which gives us several
forms of Taylor�s formula.
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4.4.1 Taylor�s formula with Lagrange remainder

Theorem 204 Let f : [a; b] �! R be a function such that f 2 Cn([a; b]) and
f (n) derivable on ]a; b[;. Then there exists c 2 ]a; b[ such that

f(b) = f(a) +
(b� a)
1!

f 0(a) +
(b� a)2
2!

f 00(a) + :::::::+
(b� a)n
n!

f (n)(a)

+
(b� a)n+1
(n+ 1)!

f (n+1)(c):

It is the Taylor formula with Lagrange�s remainder : Rn =
(b� a)n+1
(n+ 1)!

f (n+1)(c):

4.4.2 Taylor-Maclaurin formula

If h = b � a; then c = a + �h with � 2 ]0; 1[ and if we substitute into the
Taylor-Lagrange formula, we obtain the Maclaurin Taylor formula.

Theorem 205 Let I an interval of R; a 2 I; f 2 Cn(I) and f admits a
derivative of order (n+ 1) on I: Then for any a+ h 2 I; there exists � 2 ]0; 1[
such that

f(a+h) = f(a)+
h

1!
f 0(a)+

h2

2!
f 00(a)+:::::::+

hn

n!
f (n)(a)+

hn+1

(n+ 1)!
f (n+1)(a+�h):

Remark 206 If we set a = 0 and x = a + h By substituting into the Taylor-
Maclaurin formula, we obtain the Maclaurin formula of order n with Lagrange�s
remainder.: 8x 2 I;9� 2 ]0; 1[ such that

f(x) = f(0) +
x

1!
f 0(0) +

x2

2!
f 00(0) + :::::+

xn

n!
f (n)(0) +

xn+1

(n+ 1)!
f (n+1)(�x):

4.4.3 Taylor�s formula with Young�s remainder

Theorem 207 Let f : [a; b] �! R; x0 2 [a; b] and assume that f (n)(x0) exists
(�nite). Then for any x 2 [a; b] ; we have

f(x) = f(x0) +
(x� x0)
1!

f 0(x0) +
(x� x0)2

2!
f 00(x0) + :::::+

(x� x0)n
n!

f (n)(x0)

+o((x� x0)n);
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such that lim
x�!x0

o((x� x0)n)
(x� x0)n

= 0:

The remainder o((x� x0)n) = (x� x0)n"(x) = lim
x�!x0

"(x) = 0:

4.4.4 Maclaurin-Young formula

By taking x0 = 0 and with the same assumptions as those of the Taylor-Young
formula, we obtain the Maclaurin formula of order n with the following Young�s
remainder term :

f(x) = f(0) +
x

1!
f 0(0) +

x2

2!
f 00(0) + :::::+

xn

n!
f (n)(0) + xn"(x) = lim

x�!0
"(x) = 0:

Example 208 1) 8x 2 R; ex = 1+ x
1!
+
x2

2!
+:::::+

xn

n!
+o(xn) = lim

x�!0

o(xn)

xn
= 0:

2) 8x 2 R; sinx = x � x3

3!
+
x5

5!
+ ::::: + (�1)n x2n+1

(2n+ 1)!
+ o(x2n+1) =

lim
x�!0

o(x2n+1)

x2n+1
= 0:

3) 8x 2 R; cosx = 1�x
2

2!
+
x4

4!
+:::::+(�1)n x

2n

(2n)!
+o(x2n) = lim

x�!0

o(x2n)

x2n
= 0:

4) f(x) = (1 + x)�; x 2 ]�1;+1[ ; 8� 2 R;
f is inde�nitely derivable :

8k 2 N�; f (k)(x) = �(�� 1):::::(�� k + 1)(1 + x)��k;
then f (k)(0) = �(�� 1):::::(�� k + 1)

(1 + x)� = 1 +
�x

1!
+
�(�� 1)

2!
x2 + :::::+

�(�� 1)::::(�� n+ 1)
n!

xn + o(xn)

/ lim
x�!0

o(x2n+1)

x2n+1
= 0:

If � = �1 :
1

1 + x
= (1 + x)�1 = 1� x+ x2 + ::::+ (�1)nxn + o(xn); = lim

x�!0

o(xn)

xn
= 0;

we deduce
1

1� x =
1

1 + (�x) = 1 + x+ x
2 + ::::+ xn + o(xn); = lim

x�!0

o(xn)

xn
= 0:
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4.5 Exercises

Exercise 209 We de�ne the function f (x) =

8<: x2 sin
1

x
; x 6= 0;

0 ; x = 0:

1) Give the domain of de�nition Df of the function f:

2) Study the continuity and derivability of f on Df and calculate f 0:

3) f is it of class C1(R)?

4) Prove that : 8x 2 R; jsinxj � jxj :

Solution :

We de�ne the function f (x) =

8<: x2 sin
1

x
; x 6= 0;

0 ; x = 0:

1) The domain of de�nition Df = R:

2) Study the continuity and derivability of f on Df :

f is continuous and derivable on R� because it is the product and the com-
position of continuous and deriviable functions on R�:

Continuity at 0 : f(0) = 0;

lim
x�!0

f(x) = lim
x�!0

x2 sin
1

x
= 0 = f(0);

(since lim
x�!0

x2 = 0 and sin
1

x
is bounded).

Then f is continuous at 0, hence f is continuous on R:

Derivability at 0 :

lim
x�!0

f(x)� f(0)
x� 0 = lim

x�!0

x2 sin
1

x
x

= lim
n�!0

x sin
1

x
= 0;

(since lim
x�!0

x = 0 and sin
1

x
is bounded).

Then f is derivable at 0 and f 0(0) = 0:

Thus f is continuous and derivable on R:

f 0(x) =

8<: 2x sin
1

x
� cos 1

x
; x 6= 0;

0; x = 0;

3) f is of class C1(R) if f 0 is continuous on R:

f 0 is continuous on R� because it is the sum, the product and the composition
of continuous functions on R�:
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Continuity of f 0 at 0 : f 0(0) = 0;

lim
x�!0

f 0(x) = lim
x�!0

�
2x sin

1

x
� cos 1

x

�
: does not exist (since lim

x�!0
cos

1

x
does

not exist).

Then f 0 is not continuous at 0, therefore f =2 C1(R):

4) We prove that : 8x 2 R; jsinxj � jxj :

Let x 2 R; then we have x = 0 or x > 0 or x < 0:

- If x = 0 : j sin 0j = 0 � j0j = 0:

- If x > 0 : we set g(t) = sin t on [0; x];

g is continuous on [0; x] and derivable on ]0; x[, then, according to the Mean
Value Theorem, we have
9c 2]0; x[ such that g(x)� g(0) = (x� 0)g0(c); then sinx = x cos c;

so j sinxj = jxjj cos cj � jxj (since j cos cj � 1), hence j sinxj � jxj:

- If x < 0 : we set g(t) = sin t on [x; 0]

g is continuous on [x; 0] and derivable on ]x; 0[, then, according to the Mean
Value Theorem, we have
9c 2]x; 0[ such that g(x)� g(0) = (x� 0)g0(c); then sinx = x cos c;

so j sinxj = jxjj cos cj � jxj (since j cos cj � 1), hence j sinxj � jxj:

Therefore 8x 2 R; jsinxj � jxj :

Exercise 210 Let the function f(x) =
x2

x+ 2
e
�1
x2 :

1) Find the domain of de�nition Df of the function f:

2) Study the continuity and derivability of the function f:

3) Study the extension by continuity of f:

4) Prove that 8x 2 R; ex � x+ 1:

Solution :

f(x) =
x2

x+ 2
e
�1
x2 :

1) Df = Rr f�2; 0g :

2) Study the continuity and derivability of the function f :

f is continuous and derivable on Df because it is the sum, the product, and
the composition of continuous and derivable functions on Df :
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3) The extension by continuity of f at x0 = �2 =2 Df ;

lim
x�!�2

f(x) = lim
x�!�2

x2

x+ 2
e
�1
x2 = �1;

then f does not admit an extension by continuity at x0 = �2.

The extension by continuity of f at x0 = 0 =2 Df ;

lim
x�!0

f(x) = lim
x�!0

x2

x+ 2
e
�1
x2 = 0;

then f admit an extension by continuity at 0 and its extension is :

ef(x) =
8<: x2

x+ 2
e
�1
x2 ; x 2 Rr f0;�2g ;

0; x = 0:

4) We prove 8x 2 R; ex � x+ 1:

We study three cases :

1stcase : if x = 0 :

we directly substitute into the inequality : e0 = 1 � 0 + 1; so the inequality
holds.

2ndcase : if x > 0 :

We apply the Mean Value Theorem, we take g(t) = et and [a; b] = [0; x] ;

g is continuous on [0; x] and derivable on ]0; x[, then, according to the Mean
Value Theorem

9c 2]0; x[ such that g(x)� g(0) = (x� 0)g0(c);

then ex � e0 = (x� 0)ec; hence ex � 1 = xec > x (since c > 0 =) ec > 1);

thus ex > x+ 1:

3rdcase : if x < 0 :

We apply the Mean Value Theorem, we take g(t) = et and [a; b] = [x; 0] ;

g is continuous on [x; 0] and derivable on ]x; 0[, then, according to the Mean
Value Theorem

9c 2]x; 0[ such g(x)� g(0) = (x� 0)g0(c);

then ex � e0 = (x� 0)ec;

hence ex � 1 = xec > x (since c < 0 =) ec < 1 and x < 0);

therefore ex > x+ 1:

Conclusion : 8x 2 R; ex � x+ 1:
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Exercise 211 Let f be a function de�nie by

f(x) =

�
x3(2� 3 ln(x2)) ; x 6= 0;

0 ; x = 0:

1) Justify the application of Rolle�s Theorem to the function f on
h
0; e

1
3

i
:

2) Specify the value c 2
i
0; e

1
3

h
= f 0(c) = 0:

Solution :
1)We justify the application of Rolle�s Theorem to the function f on

h
0; e

1
3

i
:

We study the continuity of f on Df = R :

f is continuous on R� because it is the sum, the product, and the composition
of continuous functions on R�:

Continuity of f at 0 : f(0) = 0;

lim
x�!0

f(x) = lim
x�!0

x3(2� 3 ln(x2)) = lim
x�!0

(2x3 � 3x3 ln(x2)) = 0 = f(0);

then f is continuous at 0; so f is continuous on R:

f is derivable on R� because it is the sum, the product, and the composition
of derivable functions on R�:

Then f is continuous on
h
0; e

1
3

i
and it is derivable on

i
0; e

1
3

h
; moreover

f(0) = f(e
1
3 ) = 0;

Thus, according to Rolle�s Theorem, 9c 2
i
0; e

1
3

h
= f 0(c) = 0:

2) Let�s specify the value c 2
i
0; e

1
3

h
= f 0(c) = 0:

For x 6= 0; f 0(x) = 3x2(2� 3 ln(x2)) + x3 (�6x)
x2

= �9x2 ln(x2);

f 0(c) = 0() �9c2 ln(c2) = 0;

since c 2
i
0; e

1
3

h
, so c = 1:

Exercise 212 Let the function f(x) =
4ex

ex + 1
.

1) Find the domain of de�nition Df de la fonction f:

2) Study the continuity and derivability of the function f and calculate f 0:

3) Prove that f admit a unique �xed point in ]3; 4[.
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Solution :
1) Df = R:

2) Study of the continuity and the derivability of the function f :

f is continuous and derivable on R because it is the sum and the product of
continuous and derivable functions on R:

8x 2 R; f 0(x) = 4ex

(ex + 1)2
:

3) Let us show that f admit a unique �xed point in ]3; 4[ :

the �xed point of f is the solution of the equation f(x) = x:

We set g(x) = f(x)� x;

g is continuous on [3; 4] because it is the sum of two continuous functions on
R, particularly on [3; 4] ;

moreover, we have g(3) > 0 and g(4) < 0;

thus, according to the Intermediate Value Theorem, 9c 2 ]3; 4[ = g(c) = 0:

Let us show that this point is unique: it is enough to show that the function
g is strictly monotone.

g0(x) = 4ex

(ex + 1)2
� 1 = �(ex � 1)2

(ex + 1)2
< 0; 8x 2 R�;

then g is strictly monotone, hence the point c is unique.

We have f(c)� c = 0, d�où f(c) = c; so f admit a unique �xed point.



Chapter 5

Circular functions and
hyperbolic functions

5.1 Reciprocal circular functions

5.1.1 Arcsine function

Let f :
h
��
2
;
�

2

i
�! [�1; 1] = f(x) = sinx:

f 0(x) = cosx:

f is continuous and strictly increasing on
h
��
2
;
�

2

i
:

f
�h
��
2
;
�

2

i�
= [�1; 1] :

Then, f is a bijection and therefore f has an inverse function f�1.

f�1 : [�1; 1] �!
h
��
2
;
�

2

i
= f�1(x) = arcsinx:

f�1 is continuous and strictly increasing on [�1; 1].

8x 2 [�1; 1] ; f�1(x) = y = y 2
h
��
2
;
�

2

i
and x = sin y:

The derivative of the inverse function f�1:

(arcsinx)0 =
1p
1� x2

;8x 2 ]1; 1[ :

Remark 213 The graph of the inverse function is obtained by symmetry with
respect to the �rst bisector (y = x):

75
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Graphs

Graph of f(x) = sinx

Graph of f�1(x) = arcsinx

5.1.2 Arccosine function

Let f : [0; �] �! [�1; 1] = f(x) = cosx:

f 0(x) = � sinx:

f is continuous and strictly decreasing on [0; �] :
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f([0; �]) = [�1; 1] :

Then, f is a bijection and therefore f has an inverse function f�1.

f�1 : [�1; 1] �! [0; �] = f�1(x) = arccosx:

f�1 is continuous and strictly decreasing on [�1; 1].

8x 2 [�1; 1] ; f�1(x) = y = y 2 [0; �] et x = cos y:

The derivative of the inverse function f�1:

(arccosx)0 = � 1p
1� x2

;8x 2 ]1; 1[ :

Graphs

Graph of f(x) = cosx



78CHAPTER 5. CIRCULAR FUNCTIONS ANDHYPERBOLIC FUNCTIONS

Graph of f�1(x) = arccosx

Property:
8x 2 [�1; 1] ; arcsinx+ arccosx = �

2

Indeed, we set f(x) = arcsinx+ arccosx;

8x 2 ]�1; 1[, f 0(x) = 1p
1� x2

� 1p
1� x2

= 0;

then, f(x) = c : constant.

c = f(0) = arcsin 0 + arccos 0 = 0 +
�

2
=
�

2
;

and we have f(1) = f(�1) = �

2
:

Therefore, 8x 2 [�1; 1] ; arcsinx+ arccosx = �

2
:

5.1.3 Arctangent function

Let f :
i
��
2
;
�

2

h
�! R = f(x) = tanx =

sinx

cosx
:

f 0(x) =
1

cos 2x
= 1 + tan 2x:

f is continuous and strictly increasing on
i
��
2
;
�

2

h
:

f
�i
��
2
;
�

2

h�
= R:
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Then, f is a bijection and therefore f has an inverse function f�1.

f�1 : R �!
i
��
2
;
�

2

h
, = f�1(x) = arctanx:

f�1 is continuous and strictly increasing on R.

8x 2 R; f�1(x) = y = y 2
i
��
2
;
�

2

h
et x = tan y:

The derivative of the inverse function f�1:

(arctanx)0 =
1

1 + x2
:

Graphs:

Graph of f(x) = tanx
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Graph of f�1(x) = arctanx

Remark 214 We introduce the function arccot : R �! ]0; �[ which is the

inverse function of the restriction of the function cot on ]0; �[ (cotx =
cosx

sinx
):

We have : (arccotx)0 = � 1

1 + x2
:

8x 2 R; arctanx+ arccotx = �

2
:

5.2 Hyperbolic functions and their inverses

5.2.1 Hyperbolic sine function and its inverse, Hyperbolic
sine function argument"

Let f : R �! R = f(x) = shx =
ex � e�x

2
:

8x 2 R; f 0(x) = ex + e�x

2
= chx > 0:

Remark 215 f is odd, so it is enough to study f on R+, the rest of the graph
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can be deduced by symmetry with respect to the origin of the coordinate system.

Variations and graph of f(x) = shx

lim
x!+1

shx

x
= +1,

Then, there exists an asymptotic direction parallel to the axis (OY ).

f is continuous and strictly increasing on R:

f(R) = R:

Hence, f is a bijection and therefore f has an inverse function f�1 :

f�1 : R �! R = f�1(x) = arg shx:

f�1 is continuous and strictly increasing on R.

8x 2 R; y = arg shx() y 2 R and x = shy:

The derivative of the inverse function f�1:

8x 2 R; (arg shx)0 = 1p
1 + x2

:

5.2.2 Hyperbolic cosine function and its inverse, Hyper-
bolic cosine function argument

Let f : R �! R = f(x) = chx =
ex + e�x

2
:

8x 2 ]0;+1[ ; f 0(x) = ex � e�x
2

= shx > 0:
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Remark 216 f is an even function, so it is enough to study f sur R+, and the
rest of the graph can be deduced by symmetry with respect to the axis (Oy).

Variations and graph of f(x) = chx

lim
x!+1

chx

x
= +1,

then, there exists an asymptotic direction parallel to the (Oy) axis.

Since f is not injective on R, we consider its restriction on [0;+1[ :

f : [0;+1[ �! [1;+1[ = f(x) = chx:

f is continuous and strictly increasing on [0;+1[ :

f([0;+1[) = [1;+1[ :

Then, f is a bijection and consequently f admits an inverse function f�1 :

f�1 : [1;+1[ �! [0;+1[ = f�1(x) = arg chx:

f�1 is continuous and strictly increasing on [1;+1[.

8x � 1; y = arg chx() y � 0 and x = chy:

The derivative of the inverse function f�1:

8x > 1; (arg chx)0 = 1p
x2 � 1

:

Properties :
1) chx+ shx = ex:

2) chx� shx = e�x:

3) ch2x� sh2x = 1:

4) ch(x+ y) = chx:chy + shx:shy:
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5) ch(2x) = ch2x+ sh2x = 1 + 2sh2x = 2ch2x� 1:
6) sh(x+ y) = shx:chy + shy:chx:

7) sh(2x) = 2shx:chx:

Remark 217 We can express the functions arg shx and arg chx using the log-
arithmic function :

1) x = shy () y = arg shx;

ch2y � sh2y = 1 =) ch2y = 1 + sh2y and chy > 0;

then, chy =
p
1 + sh2y =

p
1 + x2;

hence, shy + chy = x+
p
1 + x2 = ey;

therefore, y = ln(x+
p
1 + x2);

�nally, arg shx = ln(x+
p
1 + x2):

2) chy = x and shy =
p
x2 � 1 (since y � 0);

then, chy + shy = x+
p
x2 � 1 = ey;

hence, y = ln(x+
p
x2 � 1);

therefore, arg chx = ln(x+
p
x2 � 1); x � 1:

5.2.3 Hyperbolic tangent function and its inverse hyper-
bolic tangent function argument

Let f : R �! R = f(x) = thx =
shx

chx
=
ex � e�x
ex + e�x

=
e2x � 1
e2x + 1

:

8x 2 R; f 0(x) = 1
ch2x = 1� th

2x > 0:

Remark 218 f is odd, so it is enough to study f on R+, we can deduce the
rest of the graph by symmetry with respect to the origin of the coordinate system

Variations and graph of f(x) = thx
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f(R) = ]�1; 1[ :

Then, we consider the function f : R �! ]�1; 1[ = f(x) = thx:

f is continuous and strictly increasing on R:

Then, f is a bijection and consequently,f has an inverse function f�1:

f�1 : ]�1; 1[ �! R = f�1(x) = arg thx:

f�1 is continuous and strictly increasing on ]�1; 1[.

8x 2 ]�1; 1[ ; y = arg thx() y 2 R and x = thy:

The derivative of the inverse function f�1:

8x 2 ]�1; 1[ ; (arg thx)0 = 1

1� x2

5.2.4 Hyperbolic cotangent function and its inverse hy-
perbolic cotangent function argument

Let f : R� �! R = f(x) = cothx =
1

thx
=
chx

shx
=
ex + e�x

ex � e�x =
e2x + 1

e2x � 1 :

8x 2 R�; f 0(x) = � 1

sh2x
= 1� coth 2x < 0:

Remark 219 f is odd.

Variations and graph of f(x) = cothx
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The lines with equations x = 0, y = 1 and y = �1 are asymptotes.
f(R�) = ]�1;�1[ [ ]1;+1[ :
Then, we consider the function f : R� �! ]�1;�1[ [ ]1;+1[ = f(x) =

cothx:

f is continuous and strictement decreasing on R�:

then, f is a bijection and therefore f admits an inverse function f�1:

f�1 : ]�1;�1[ [ ]1;+1[ �! R� = f�1(x) = arg cothx:

f�1 is continuous and strictly decreasing on]�1;�1[ [ ]1;+1[.
8x 2 ]�1;�1[ [ ]1;+1[ ; y = arg cothx() y 2 R� and x = coth y:

The derivative of the inverse function f�1:

8x 2 ]�1;�1[ [ ]1;+1[ ; (arg cothx)0 = 1

1� x2 :

5.3 Exercices

Exercise 220 Let the function f(x) = arccos
1� x
2

:

1) Find the domain of de�nition. Df of the function f:

2) Study the continuity and derivability of the function f and calculate f 0:

Solution :
f(x) = arccos

1� x
2

:

1) The domain of de�nition Df of the function f :

the function arccosx is de�ned on [�1; 1] ; then we have

Df =

�
x 2 R = � 1 � 1� x

2
� 1
�
;

�1 � 1� x
2

� 1() �2 � 1� x � 2() �1 � x � 3

hence, Df = [�1; 3] :
2) Study of the continuity and derivability of the function f :

� f is continuous on [�1; 3] because it is the sum, the product, and the
composition of continuous functions on [�1; 3] :
� f is derivable on ]�1; 3[ because it is the sum, the product, and the com-

position of derivable functions on ]�1; 3[ :
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8x 2 ]�1; 3[ ; f 0(x) = �1
2

0BB@ �1r
1� (1� x

2
)2

1CCA =

�
1p

�x2 + 2x+ 3

�
:

Exercise 221 Let the function f(x) = x� arctan x+ 1
x

.

1) Find the domain of de�nition Df of the function f:

2) Study the continuity and derivability of the function f and calculate f 0:

3) Study the extension by continuity of f:

4) Prove that : 8x � 0; x

1 + x2
� arctanx � x:

Solution :
1) f(x) = x� arctan x+ 1

x
:

The function arctanx is de�ned on R; then Df = R�:

2) Study of the continuity and derivability of the function f :

f is continuous and derivable on R� because it is the sum, the product, and
the composition of continuous and derivable functions on R�:

8x 2 R�; f 0(x) = 1�
�
x+ 1

x

�0
1

1 +

�
x+ 1

x

�2 = 1���1x2
�

1

x2 + (x+ 1)2

x2

;

f 0(x) = 1 +
1

x2 + (x+ 1)2
:

3) Study of the extension by continuity of f at x0 = 0 : 0 =2 Df

lim
x

>�!0

f(x) = lim
x

>�!0

�
x� arctan x+ 1

x

�
= ��

2
;

lim
x

<�!0

f(x) = lim
x

<�!0

�
x� arctan x+ 1

x

�
=
�

2
;

then, f does not admit a limit at 0.

Therefore, f does not admit an extension by continuity at 0.

4) Let us show that : 8x � 0; x

1 + x2
� arctanx � x:

We study two cases :

1stcase : if x = 0 :
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we directly substitute into the inequality :
0

1 + 02
� arctan 0 = 0 � 0;

so, the inequality holds.

2ndcase : if x > 0 :

we apply the Mean Value Theorem,

we take g(t) = arctan t and [a; b] = [0; x] ;

g0(t) =
1

1 + t2
:

g is continuous on [0; x] and derivable on ]0; x[, then, according to the Mean
Value Theorem

9c 2]0; x[ such that g(x)� g(0) = (x� 0)g0(c);

then, arctanx� arctan 0 = (x� 0) 1

1 + c2
;

so, arctanx =
x

1 + c2
:

On the other hand, we have

c 2]0; x[=) 0 < c < x =) 1 < 1 + c2 < 1 + x2;

then,
1

1 + x2
<

1

1 + c2
< 1 =) x

1 + x2
<

x

1 + c2
< x;

thus,
x

1 + x2
< arctanx < x:

Conclusion :
8x � 0; x

1 + x2
� arctanx � x:

Exercise 222 Let the function f(x) = arcsin
x

1 + x
:

1) Find the domain of de�nition Df of the function f:

2) Study the continuity and derivability of the function f and calculate f 0:

Solution :
1) f(x) = arcsin

x

1 + x
:

The function arcsinx is de�ned on [�1; 1] ; then

Df =

�
x 2 R=� 1 � x

1 + x
� 1
�
=

�
x 2 R=

���� x

1 + x

���� � 1� ;���� x

1 + x

���� � 1() x2

(1 + x)2
� 1() x2 � (1 + x)2 = x2 + 2x+ 1
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() 2x+ 1 � 0() x � �1
2
:

Then, Df =
�
�1
2
;+1

�
:

2) Study of the continuity and derivability of the function f:

f is continuous onDf because it is the sum, the product, and the composition
of continuous functions on Df :

f is derivable on
�
�1
2
;+1

�
because it is the sum, the product, and the

composition of derivable functions on
�
�1
2
;+1

�
:

8x 2
�
�1
2
;+1

�
;

f 0(x) =

�
x

1 + x

�0
1s

1�
�

x

1 + x

�2 = 1

(1 + x)2
1s

(x+ 1)2 � x2
(1 + x)2

;

8x 2
�
�1
2
;+1

�
; f 0(x) =

1

(1 + x)

1p
2x+ 1

:
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Usual formulas

6.1 Partial sum of an arithmetic sequence

Un = U0 + nr; r 2 R�:

Sn = U0 + U1 + U2 + :::::+ Un = (U0 + Un)
n+ 1

2
:

6.2 Partial sum of a geometric sequence

Un = U0q
n; q 6= 1;

Sn = U0 + U1 + U2 + :::::+ Un = U0

�
1� qn+1
1� q

�
:

If q = 1; Sn = (n+ 1)U0:

lim
n�!+1

qn = 0() �1 < q < 1

6.3 Trigonometry Formulas

1) sin(a+ b) = sin a cos b+ sin b cos a, so sin 2a = 2 sin a cos a:

2) sin(a� b) = sin a cos b� sin b cos a:

3) cos(a+ b) = cos a cos b� sin a sin b, so cos 2a = cos2 a� sin2 a:

4) cos(a� b) = cos a cos b+ sin a sin b:

5) cos 2a = 2 cos2 a� 1, so cos2 a = cos 2a+ 1

2
:

6) cos 2a = 1� 2 sin2 a, so sin2 a = 1� cos 2a
2

:

89
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7) sin p+ sin q = 2 sin
p+ q

2
cos

p� q
2
:

8) sin p� sin q = 2 sin p� q
2

cos
p+ q

2
:

9) cos p+ cos q = 2 cos
p� q
2

cos
p+ q

2
:

10) cos p� cos q = �2 sin p� q
2

sin
p+ q

2
:

11) tan(a+ b) =
tan a+ tan b

1� tan a: tan b :

12) tan(a� b) = tan a� tan b
1 + tan a: tan b

:

Relation between sine and cosine
sin2 x+ cos2 x = 1; 8x 2 R:

6.4 Common values

nombre 0
�

6

�

4

�

3

�

2
�

sinus 0
1

2

p
2

2

p
3

2
1 0

cosinus 1

p
3

2

p
2

2

1

2
0 �1

tangente 0

p
3

3
1

p
3 0

6.5 Properties of hyperbolic functions

Hyperbolic sine : shx =
ex � e�x

2
; 8x 2 R:

Hyperbolic cosine : chx =
ex + e�x

2
; 8x 2 R:

1) chx+ shx = ex:

2) chx� shx = e�x:
3) ch2x� sh2x = 1:
4) ch(x+ y) = chx:chy + shx:shy:

5) ch(2x) = ch2x+ sh2x = 1 + 2sh2x = 2ch2x� 1:
6) sh(x+ y) = shx:chy + shy:chx:

7) sh(2x) = 2shx:chx:
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6.6 Derivatives of usual functions
The function The derivative

f(x) = xn f 0(x) = nxn�1;8x 2 R

f(x) = lnx f 0(x) =
1

x
;8x > 0

f(x) = ex f 0(x) = ex;8x 2 R

f(x) =
p
x f 0(x) =

1

2
p
x
;8x > 0

f(x) = sinx f 0(x) = cosx; 8x 2 R

f(x) = cosx f 0(x) = � sinx; 8x 2 R

f(x) = tanx =
sinx

cosx
f 0(x) =

1

cos2 x
= 1 + tan2 x; x 6= �

2 + k�

f(x) = shx =
ex � e�x

2
f 0(x) = chx =

ex + e�x

2
;8x 2 R

f(x) = chx f 0(x) = shx; 8x 2 R

f(x) = thx =
shx

chx
f 0(x) =

1

ch2x
= 1� th2x;8x 2 R

f(x) = arcsinx;8x 2 [�1; 1] f 0(x) =
1p
1� x2

;8x 2 ]�1; 1[

f(x) = arccosx;8x 2 [�1; 1] f 0(x) =
�1p
1� x2

;8x 2 ]�1; 1[

f(x) = arctanx f 0(x) =
1

1 + x2
;8x 2 R

f(x) = arg shx f 0(x) =
1p
x2 + 1

f(x) = arg chx f 0(x) =
1p
x2 � 1

f(x) = arg thx f 0(x) =
1

1� x2

f(x) = (U(x))n f 0(x) = nU 0(x)Un�1(x)

f(x) = ln(U(x)) f 0(x) = U 0(x)
U(x)

f(x) = eax f 0(x) = aeax;8x 2 R
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6.7 Lexicon

A
- Absolute value : valeur absolue.
- Absolute convergence : convergence absolue.
- Almost : presque.
- Analysis : analyse.
- Antisymetric : antisymétrique.
- Apex : sommet.
- Argument : argument.
- Arithmetic : arithmétique.
- Array : tableau.
- Assume : supposer.
- Assumption : supposition.
- Axiom : axiome.
- Axis : axe.
B
- Basis : base.
- Bijective : bijective.
- Bounded : borné.
- Bracket : parenthèse.
- By induction : par récurrence.
C
- Calculus : calcul.
- Cartesian coordinate system.: Repère cartésien.
- Cauchy sequence : suite de Cauchy.
- Center : centre
- Characteristic : caractéristique.
- Characteristic polynomial : polynôme caractéristique.
- Circle : cercle.
- Closed : fermé.
- Coe¢ cient : coe¢ cient.
- Combination : combinaison.
- Common factor : facteur commun.
- Commutative : commutatif.
- Complete : complet.
- Complex number : nombre complexe.
- Computation : calcul.
- Consequently : par conséquent.
- Constant : constante.
- Continuity : continuité.
- Continuous (function) : continue (fonction).
- Contraction : contraction.
- Convergence : convergence.
- Converge to a limit : converger vers une limite.
- Converse of a theorem : réciproque d�un théorème.
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- Conversely : réciproquement.
- Coordinate : coordonnée.
- Cosine : cosinus.
- Countable : dénombrable.
- Counterexample : contre-exemple.
- Coverage of a set : recouvrement d�un ensemble.
- Cube root : racine cubique.
- Curve : courbe.
D
- Decomposition : décomposition.
- Decreasing function : fonction décroissante.
- De�ned : dé�ni.
- Degree : degré.
- Delete (to) : supprimer.
- Denote : noter.
- Density : densité.
- Derivative : dérivée.
- Direct sum : somme directe.
- Divide : diviser.
- Dot : point.
E
- Eigenvalue : valeur propre.
- Eigenvector : vecteur propre.
- Element : élément.
- Endpoint : Extrémité.
- Entire function : fonction entière.
- Equality : égalité.
- Equation : équation.
- Equilateral triangle : triangle equilatéral.
- Equivalence relation : relation d�équivalence.
- Equivalent : équivalent
- Euclidean : euclidien.
- Even : pair.
- Everywhere : partout.
- Exact : exact.
- Example : exemple.
- Exponential : exponentiel.
F
- Factorial : factoriel.
- Factorise : factoriser
- Field : corps.
- Finite : �ni.
- Finite dimensional real vector space : espace vectoriel réel de dimension

�nie
- Fixed : �xe.
- Fixed point : point �xe.
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- Formula : formule.
- Fractional line : trait de fraction.
- Free : libre.
- Function : fonction.
- Fundamental : fondamental.
G
- Graph : graphe.
- Greatest : plus grand (le).
- Greatest common divisor (gcd) : pgcd.
- Group : groupe.
H
- Higher derivative : dérivée d�ordre supérieur.
- Homogeneous : homogène.
- However : toutefois.
- Hyperbola : hyperbole.
- Hypotenuse : hypoténuse.
- Hypothesis : hypothèse.
I
- Identity : identité.
- Identity element : élément neutre.
- If and only if : si et seulement si.
- Increasing function : fonction croissante.
- Indeed : en e¤et.
- Independent : indépendant.
- Induction : récurrence.
- Inequality : inégalité.
- In�mum (greatest lower bound) : borne inférieure.
- In�nite : in�ni.
- Integer number : nombre entier.
- Integral : intégrale.
- Intermediate value theorem : théorème des valeurs intermédiaires.
- Interval : intervalle.
- inverse image : image réciproque.
- Invertible : inversible.
- Involve : impliquer.
- Irreducible : irréductible.
- Isocel triangle : triangle isocèle
- Isolated : isolé.
- Isomorphism : isomorphisme.
J
K
- Kernel : noyau.
L
- Law of composition : loi de composition.
- Least : plus petit.
- Least common multiple (lcm) : ppcm.
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- Lemma : lemme.
- Length : longueur.
- Less than : plus petit que
- Let.....be : soit.
- Limit : limite
- Linear : linéaire.
- Linearly independent family : famille libre.
- Lower limit : limite inférieure.
- Lower bound : minorant.
M
- Major : majeur.
- Majorized : majoré
- Manifold : variété.
- Map : application.
- Maximal : maximal.
- Mean : moyenne.
- Meet of two sets : intersection de deux ensembles.
- Merely : seulement.
- Minimal : minimal.
- Minorized : minoré.
- Monic : unitaire.
- Monotonic function : fonction monotone.
- Multiplicity : multiplicité.
- Multiply : multiplier.
N
- Necessary condition : condition nécessaire.
- Negligible : négligeable.
- Neighborhood : voisinage.
- Neperian logarithm : logarithme népérien.
- Non-empty : non vide.
- Not all zero : non tous nuls.
- Null : nul.
- Number : nombre.
- Numerator : numérateur.
O
- Object : objet.
- Odd : impair.
- One-to-one map : application injective.
- Onto (a map) : surjective.
- Open : ouvert.
- Operator : opérateur.
- Order : ordre.
- Order or multiplicity of a root : ordre de multiplicité d�une racine.
- Order relation : relation d�ordre.
- Ordinate : ordonnée.
P
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- Parameter : paramètre
- Partial fraction expansion : décomposition en éléments simples.
- Partial order : relation d�ordre.
- Partition : partition.
- Perfect : parfait.
- Period : période.
- Periodicity : périodicité.
- Permutation : permutation.
- Plane : plan.
- Point : point.
- Polynomial : polynôme.
- Power : puissance.
- Prime : premier.
- Prime number : nombre premier.
- Product : produit.
- Proof : preuve.
- Proper : propre.
- Property : propriété.
- Pythagorean triple : triplet pythagoricien.
Q
R
- Radius : rayon
- Raise to the power n : élever à la puissance n.
- Range : image.
- Rank : rang.
- Ratio : rapport.
- Rational function : fonction rationnelle.
- Real number : nombre réel.
- Rectangle : rectangle.
- Reduced : réduit.
- Regular : régulier
- Relatively prime integers : entiers premiers entre eux.
- Remark : remarque.
- representation : représentation.
- Right-hand side : membre de droite.
- Ring : anneau.
- Root : racine.
- Row : ligne.
- Rule : règle.
- Ruler : règle (instrument).
S
- Scalar : scalaire.
- Schwarz inequality : inégalité de Schwarz.
- Section : section.
- Segment : segment.
- Sequence : suite.
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- Series : série.
- Set : ensemble.
- Several : plusieurs.
- Shape : forme.
- Sign : signe.
- Sine : sinus.
- Singular : singulier.
- Size : taille.
- Small : petit.
- Smooth : lisse.
- Space : espace.
- Square : élever au carré.
- Square : carré.
- Square root : racine carré.
- Star : Etoile.
- Strictly : strictement
- Sub : sous-
- Subgroup : sous-groupe.
- Subset : sous-ensemble (partie).
- Subspace : sous-espace.
- Subtract : soustraire.
- Subtraction : soustraction.
- Su¢ cient : su¢ sant.
- Su¢ cient condition : condition su¢ sante.
- Sum : somme.
- Summarize (to) : résumer.
- Support : support.
- Supremum (least upper bound) : borne supérieure.
- Surface : surface.
- Symmetric : symétrique.
- Symmetry : symétrie.
- System of linear equations : système d�équations linéaires.
T
- Tangent : tangente.
- Term : terme.
- Theorem : théorème.
- Theory : théorie.
- Totally ordered set : ensemble totalement ordonné.
- Trace : trace.
- Trajectory : trajectoire.
- Transform : transformation.
- Transitive : transitif.
- Translation : translation.
- Transpose : transposé.
- Trapezoid : trapèze.
- Triangle : triangle.



98 CHAPTER 6. USUAL FORMULAS

- Triangle inequality : inégalité triangulaire.
- Trivial : trivial.
- Type : type.
U
- Uncountable : indénombrable.
- Uniform continuity : continuité uniforme.
- Union : réunion.
- Universal : universel.
- Unknown : inconnue.
- Upper bound : majorant.
V
- Value : Valeur.
- Variable : variable.
- Vector : vecteur.
- Vector space : espace vectoriel.
- Volume : volume.
W
- Well-de�ned : bien dé�ni.
- Width : largeur.
- Without loss of generality : sans perte de généralité.
X
Y
Z
- Zéro : zero.
- Zero of a polynomial : racine d�un polynôme.
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