ANALYSIS 1 Course & Exercises

Chahnaz Zakia TIMIMOUN

Mai 2025 University Oran1 Ahmed Ben Bella Department of Mathematics ii

Contents

Introduction

1	Rea	l numł	pers and complex numbers	1
	1.1	The se	t of real numbers	1
		1.1.1	Commutative field structure	1
		1.1.2	Total order relation	1
		1.1.3	The absolute value	2
		1.1.4	Intervals of \mathbb{R}	2
		1.1.5	Upper bound of a subset of \mathbb{R}	3
		1.1.6	Supremum of a subset of \mathbb{R}	4
		1.1.7	Lower bound of a subset of $\mathbb R$	4
		1.1.8	Infimum of a subset of \mathbb{R}	4
		1.1.9	Bounded set	5
		1.1.10	Axiom of the supremum	5
		1.1.11	Axiom of the infimum	5
		1.1.12	Characterization of the supremum	5
		1.1.13	Characterization of the infimum	5
		1.1.14	Properties of the supremum and the infimum	6
		1.1.15	Archimedes' axiom	7
		1.1.16	The greatest integer function (Floor function)	7
		1.1.17	Density of \mathbb{Q} in \mathbb{R}	8
		1.1.18	Notion of topology in \mathbb{R}	8
		1.1.19	Application	8
	1.2	The se	t of complex numbers	11
		1.2.1	Introduction	11
		1.2.2	Operations on complex numbers	11
		1.2.3	The conjugate of a complex number	11
		1.2.4	The modulus of a complex number	12
		1.2.5	Euler's formula	12
		1.2.6	The complex exponential function	12
		1.2.7	Trigonometric form of a complex number	13
		1.2.8	Moivre's formula	14
	1.3	Exerci	ses	14

 $\mathbf{i}\mathbf{x}$

CONTENTS

2 7	The	nume	rical sequences	2
4	2.1	Introdu	uction	2
		2.1.1	Sequences given as a function of n	2
		2.1.2	Recursive sequences	2
		2.1.3	Operations on sequences	4
2	2.2	The di	fferent types of sequences	4
		2.2.1	Monotonous sequences	
		2.2.2	The bounded sequences $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	
2	2.3	The na	ture of sequences	
		2.3.1	Convergent sequences	
		2.3.2	Infinite limits	
		2.3.3	Divergent sequences	
6 4	2.4	Main p	properties of sequences	
		2.4.1	Arithmetic sequence and geometric sequence	
		2.4.2	Study of recursive sequences	
		2.4.3	Properties	
4	2.5	Subseq	uences (or extracted sequences)	
4	2.6	Adjace	nt sequences	
4	2.7	The Ca	auchy sequences	
4	2.8	Exercis	Ges	
	-			
31	Fun	ctions	of one real variable. Limit and continuity	
ė	5.1	Genera	Defection of a function	
		3.1.1	Demnition of a function	
		3.1.2	Domain of definition	
		5.1.5 9.1.4		
		3.1.4	Algebraic operations on functions	
		3.1.5	Even, odd and periodic functions	
		3.1.0	Bounded functions and monotonic functions	
و	3.2	Limit (If a function at point x_0	
		3.2.1	The limit of f to the right and to the left of $x_0 \ldots \ldots$	
		3.2.2	Extension of the notion of limit	
i i	5.5	Main t	heorems on limits	
و	3.4	Contin	uous functions	
		3.4.1	Definition of the continuity of a function	
		3.4.2	Right and left continuity of the function at $x_0 \ldots \ldots$	
		3.4.3	Theorems and properties of continuous functions	
		3.4.4	Main properties of continuous functions on an interval	
		3.4.5	Extension by continuity	
		3.4.6	Uniform continuity of a function on an interval	
		3.4.7	Lipschitz function	
		3.4.8	Properties of monotonic functions on an interval	
:	3.5	Exercis	ses	

iv

CONTENTS

4	Der	ivabili	ty of functions of one real variable	55
	4.1	Gener	alities	55
		4.1.1	Definition of the derivability	55
		4.1.2	Geometric interpretation	56
		4.1.3	Right and left derivability of the function at $x_0 \ldots \ldots$	57
	4.2	Prope	rties of derivable functions	58
		4.2.1	Derivability and continuity	58
		4.2.2	Operations on derivable fonctions	59
		4.2.3	Derivative of a composed function	59
		4.2.4	Derivative of the reciprocal function	60
		4.2.5	Derivatives of order higher than 1	60
		4.2.6	Functions of class C^n	61
		4.2.7	Leibniz Formula	61
	4.3	Main	theorems	62
		4.3.1	Maximum and minimum	62
		4.3.2	Rolle's Theorem	63
		4.3.3	The Mean Value Theorem $(M.V.T) \dots \dots \dots \dots$	64
		4.3.4	Application of the Mean Value Theorem (M.V.T) to the	
			variations of functions	66
		4.3.5	Generalized Mean Value Theorem (G.M.V.T) $\ldots \ldots$	66
		4.3.6	L'Hôpital's rule	66
	4.4	Taylor	r's formula	67
		4.4.1	Taylor's formula with Lagrange remainder	68
		4.4.2	Taylor-Maclaurin formula	68
		4.4.3	Taylor's formula with Young's remainder	68
		4.4.4	Maclaurin-Young formula	69
	4.5	Exerci	ises	70
_	~			
5	Cire	cular f	unctions and hyperbolic functions	75
	5.1	Recipi	rocal circular functions	75
		5.1.1	Arcsine function	75
		5.1.2	Arccosine function	76
		5.1.3	Arctangent function	78
	5.2	Hyper	bolic functions and their inverses	80
		5.2.1	Hyperbolic sine function and its inverse, Hyperbolic sine	00
			function argument"	80
		5.2.2	Hyperbolic cosine function and its inverse, Hyperbolic co-	01
		E 9 9	Sine function argument	81
		0.2.0	tangent function argument	83
		524	Hyperbolic cotangent function and its inverse hyperbolic	00
		0.2.4	cotangent function argument	84
	5.3	Exerci	ices	85
	0.0			00

v

CONTENTS

6	\mathbf{Usu}	Jsual formulas						
	6.1	Partial sum of an arithmetic sequence	89					
	6.2	Partial sum of a geometric sequence	89					
	6.3	Trigonometry Formulas	89					
	6.4	Common values	90					
	6.5	Properties of hyperbolic functions	90					
	6.6	Derivatives of usual functions	91					
	6.7	Lexicon	92					

vi

Chapter 1

Real numbers and complex numbers

1.1 The set of real numbers

1.1.1 Commutative field structure

Let \mathbb{R} be the set of real numbers. We provide \mathbb{R} with two operations: addition (+) and multiplication (.). $(\mathbb{R}, +, .)$ is a commutative field: 1) (+) is internal: $\forall x, y \in \mathbb{R}, x + y \in \mathbb{R}$. 2) (+) is commutative: $\forall x, y \in \mathbb{R}, x + y = y + x$. 3) (+) is associative: $\forall x, y, z \in \mathbb{R}, (x+y) + z = x + (y+z).$ 4) (+) admits a neutral element: $\exists e = 0 \in \mathbb{R}, \forall x \in \mathbb{R}, x + 0 = 0 + x = x$. 5) Every element has a symmetrical element: $\forall x \in \mathbb{R}, \exists x' = -x \in \mathbb{R}, x + x' = x' + x = 0.$ So, $(\mathbb{R}, +)$ is a commutative group. 6) (.) is internal: $\forall x, y \in \mathbb{R}, x.y \in \mathbb{R}$. 7) (.) is commutative: $\forall x, y \in \mathbb{R}, x.y = y.x.$ 8) (.) is associative: $\forall x, y, z \in \mathbb{R}, (x.y).z = x.(y.z).$ 9) Distributivity: $\forall x, y, z \in \mathbb{R}, (x+y).z = x.z + y.z.$ So, $(\mathbb{R}, +, .)$ is a commutative ring. 10) (.) admits a neutral element: $\exists e' = 1 \in \mathbb{R}, \forall x \in \mathbb{R}, x.1 = 1.x = x.$ 11) Every non-zero element has a symmetric element: $\forall x \in \mathbb{R}^*, \exists x' = x^{-1} \in \mathbb{R}, x \cdot x^{-1} = x^{-1} \cdot x = 1.$ Hence, $(\mathbb{R}+, .)$ is a commutative field.

1.1.2 Total order relation

We provide \mathbb{R} with a total order relation (\leq):

a) (\leq) is reflexive: $\forall x \in \mathbb{R}, x \leq x$. b) (\leq) is antisymmetric: $\forall x, y \in \mathbb{R}, (x \leq y \land y \leq x) \Rightarrow x = y$. c) (\leq) is transitive: $\forall x, y, z \in \mathbb{R}, (x \leq y \land y \leq z) \Rightarrow x \leq z$. d) (\leq) is a total order relation: $\forall x, y \in \mathbb{R}, x \leq y \lor y \leq x$. i.e. we can always compare between two real numbers. e) $\forall x, y, z \in \mathbb{R}, x \leq y \Rightarrow x + z \leq y + z$. f) ($0 \leq x \land 0 \leq y$) $\Rightarrow 0 \leq x.y$.

Conclusion 1 $(\mathbb{R}, +, \times, \leq)$ is a totally ordered commutative field.

1.1.3 The absolute value

Notation 2 $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$.

 $\begin{aligned} \mathbb{R}_+ &= \{ x \in \mathbb{R}/x \geq 0 \}, \quad \mathbb{R}_+^* = \{ x \in \mathbb{R}/x > 0 \} \\ \mathbb{R}_- &= \{ x \in \mathbb{R}/x \leq 0 \}, \quad \mathbb{R}_-^* = \{ x \in \mathbb{R}/x < 0 \} \\ \mathbb{R}_+ \cup \mathbb{R}_- = \mathbb{R}, \quad \mathbb{R}_+ \cap \mathbb{R}_- = \{ 0 \} . \end{aligned}$

Definition 3 The absolute value is the following application:

Remark 4 $\forall x \in \mathbb{R}, -|x| \le x \le |x|$.

Absolute value properties:

1) $|x| = 0 \iff x = 0.$ 2) $\forall x, y \in \mathbb{R}, |x.y| = |x| |y|.$ 3) $\forall x \in \mathbb{R}^*, \left|\frac{1}{x}\right| = \frac{1}{|x|}.$ 4) $\forall x \in \mathbb{R}, (|x| \le \alpha \iff -\alpha \le x \le \alpha).$ 5) $\forall x, y \in \mathbb{R}, |x \pm y| \le |x| + |y|$:Triangle inequality. 6) $\forall x, y \in \mathbb{R}, ||x| - |y|| \le |x \pm y|.$

1.1.4 Intervals of \mathbb{R}

Definition 5 Let I be a nonempty part of \mathbb{R} . I is an interval of \mathbb{R} if it satisfies the following property:

$$\forall x_1, x_2 \in I, \forall y \in \mathbb{R}, (x_1 < y < x_2 \Longrightarrow y \in I).$$

Proposition 6 Let I_1 and I_2 be two intervals of \mathbb{R} such that $I_1 \cap I_2 \neq \emptyset$, then $I_1 \cap I_2$ is an interval of \mathbb{R} .

Indeed, let $x_1, x_2 \in I_1 \cap I_2$ be such that $x_1 < x_2$ and y such that $x_1 < y < x_2$. Let us show that $y \in I_1 \cap I_2$: We have $x_1, x_2 \in I_1 \cap I_2 \Longrightarrow x_1, x_2 \in I_1 \land x_1, x_2 \in I_2$, therefore, $x_1, x_2 \in I_1 \land x_1 < y < x_2 \Longrightarrow y \in I_1$ (because I_1 is an interval), and $x_1, x_2 \in I_2 \land x_1 < y < x_2 \Longrightarrow y \in I_2$ (because I_2 is an interval), hence, $y \in I_1 \land y \in I_2 \Longrightarrow y \in I_1 \cap I_2$. So, $I_1 \cap I_2$ is an interval.

Remark 7 The union of two intervals of \mathbb{R} is not necessarily an interval.

Here is an example:

 $\begin{array}{l} \textbf{Example 8} \ I_1 = [0,1] \land I_2 = [3,4] \,. \\ I = I_1 \cup I_2 = [0,1] \cup [3,4] \,. \\ We \ take \ x_1 = 1 \in I \ , \ x_2 = 3 \in I \ and \ y = 2. \\ We \ have \ x_1 = 1 < y = 2 < x_2 = 3, \ but \ y = 2 \notin I. \\ Hence, \ I = I_1 \cup I_2 \ is \ not \ an \ interval. \end{array}$

The intervals of \mathbb{R} :

Let $a, b \in \mathbb{R}$ be such that $a \le b$, $[a, b] = \{x \in \mathbb{R}/a \le x \le b\}$, $[a, b] = \{x \in \mathbb{R}/a \le x < b\}$, $]a, b] = \{x \in \mathbb{R}/a < x \le b\}$, $]a, b[= \{x \in \mathbb{R}/a < x \le b\}$, $[a, +\infty[= \{x \in \mathbb{R}/a \le x\},$ $]a, +\infty[= \{x \in \mathbb{R}/a \le x\},$ $]-\infty, a] = \{x \in \mathbb{R}/x \le a\}$, $]-\infty, a[= \{x \in \mathbb{R}/x < a\},$ $\mathbb{R} =]-\infty, +\infty[$.

1.1.5 Upper bound of a subset of \mathbb{R}

Definition 9 Let A be a nonempty part of \mathbb{R} $(A \subset \mathbb{R}, A \neq \emptyset)$. We say that $M \in \mathbb{R}$ is an upper bound of A if it satisfies

$$\forall x \in A, \ x \le M$$

We say that A is bounded above if

$$\exists M \in \mathbb{R}, \forall x \in A, \ x \leq M$$

Remark 10 If M is an upper bound of A, then all real numbers $M' \ge M$ are also upper bounds of A.

1.1.6 Supremum of a subset of \mathbb{R}

Definition 11 Let A be a nonempty part of $\mathbb{R}(A \subset \mathbb{R}, A \neq \emptyset)$ and bounded above. The supremum of A is the smallest upper bound of A. We denote it sup A.

Remark 12 The supremum when it exists is unique.

Example 13 $A = [-1, 5] \subset \mathbb{R}, A \neq \emptyset, \forall x \in A, x \leq 5,$

M = 5 is an upper bound of A.

We notice that all the real $M' \ge 5$ are also upper bounds of A. Then, the set of upper bounds of A is $M_A = [5, +\infty]$.

 $\sup A$ is the smallest upper bound of A, then $\sup A = 5$.

1.1.7 Lower bound of a subset of \mathbb{R}

Definition 14 Let A be a nonempty part of \mathbb{R} $(A \subset \mathbb{R}, A \neq \emptyset)$. We say that $m \in \mathbb{R}$ is a lower bound of A if it satisfies

 $\forall x \in A, \ m \leq x$

We say that A is bounded below if

$$\exists m \in \mathbb{R}, \forall x \in A, m \leq x$$

Remark 15 If m is a lower bound of A, then all real numbers $m' \leq m$ are also lower bounds of A.

1.1.8 Infimum of a subset of \mathbb{R}

Definition 16 Let A be a nonempty part of $\mathbb{R}(A \subset \mathbb{R}, A \neq \emptyset)$ and bounded below. The infimum of A is the greatest lower bound of A. We denote it inf A.

Remark 17 The infimum when it exists is unique.

Example 18 $A = [-1, 5] \subset \mathbb{R}, A \neq \emptyset, \forall x \in A, -1 \leq x, m = -1$ is a lower bound of A.

We notice that all the real $m' \leq -1$ are also lower bounds of A. Then the set of lower bound of A is $m_A = [-\infty, -1]$.

 $\inf A$ is the greatest lower bound of A, then $\inf A = -1$

Remark 19 1) If A is a nonempty part of \mathbb{R} not bounded above, we set $\sup A = +\infty$.

2) If A is a nonempty part of \mathbb{R} not bounded below, we set $\inf A = -\infty$.

1.1.9 Bounded set

Definition 20 Let A be a nonempty part of \mathbb{R} . A is bounded if A is bounded above and bounded below.

A is bounded $\iff (\exists M, m \in \mathbb{R}, \forall x \in A, m \le x \le M).$

A is bounded $\iff (\exists \alpha > 0, \forall x \in A, |x| \le \alpha).$

1.1.10 Axiom of the supremum

Any nonempty part of \mathbb{R} and bounded above admits a supremum.

1.1.11 Axiom of the infimum

Any nonempty part of \mathbb{R} and bounded below admits an infimum.

Remark 21 This result is not true in \mathbb{Q} .

Indeed, let A be a nonempty and bounded part of \mathbb{Q} , then $\sup A$ and $\inf A$ do not necessarily exist in \mathbb{Q} .

Example 22 $A = \left[-\sqrt{2}, \sqrt{2}\right] \cap \mathbb{Q}$ is a nonempty and bounded part of \mathbb{Q} . We notice that $\sup A = \sqrt{2} \notin \mathbb{Q}$ and $\inf A = -\sqrt{2} \notin \mathbb{Q}$

1.1.12 Characterization of the supremum

Proposition 23 Let A be a nonempty part of \mathbb{R} and let $M \in \mathbb{R}$. Then we have

 $M = \sup A \Longleftrightarrow \left\{ \begin{array}{c} 1^\circ) \; \forall x \in A, \, x \leq M, \\ 2^\circ) \; \forall \varepsilon > 0, \exists x_0 \in A \ / \ x_0 > M - \varepsilon. \end{array} \right.$

Example 24 Let $A = [1, 2[, M = 2, \forall x \in A, x \le 2]$. If we take $\varepsilon = 0, 1 \Longrightarrow M - \varepsilon = 1, 9$. $\exists x_0 = 1, 94 \in A / x_0 = 1, 94 > M - \varepsilon = 1, 9$. Then $(M - \varepsilon)$ is not an upper bound of A.

1.1.13 Characterization of the infimum

Proposition 25 Let A be a nonempty part of \mathbb{R} and let $m \in \mathbb{R}$. Then we have

$$m = \inf A \iff \begin{cases} 1^{\circ} \ \forall x \in A, \ x \ge m, \\ 2^{\circ} \ \forall \varepsilon > 0, \exists x_0 \in A \ / \ x_0 < m + \varepsilon. \end{cases}$$

- **Remark 26** If M is an upper bound of A and $M \in A$, then $M = \sup A$. Indeed, let $\varepsilon > 0$, just take $x_0 = M > M - \varepsilon$, from the characterization of the supremun, $M = \sup A$. In this case max $A = \sup A = M$ (max A exists).
- **Remark 27** If m is a lower bound of A and $m \in A$, then $m = \inf A$. Indeed, let $\varepsilon > 0$, just take $x_0 = m < m + \varepsilon$, from the characterization of the infimum, $m = \inf A$. In this case min $A = \inf A = m \pmod{\min A}$ exists).
- **Remark 28** If sup A exists but sup $A \notin A$, then max A do not exists. - If inf A exists but inf $A \notin A$, then min A do not exists.

Example 29 Let A = [0, 1[, sup $A = 1 \notin A$, then max A do not exists, inf $A = 0 \in A$, then min $A = \inf A = 0$.

1.1.14 Properties of the supremum and the infimum

Let A and B de two nonempty parts of \mathbb{R} . Then we have the following properties

1) If B is bounded and $A \subset B$, then A is bounded and we have

 $\inf B \le \inf A \le \sup A \le \sup B.$

If A and B are bounded, then

2) $A \cup B$ is bounded and nonempty and we have

$$\sup(A \cup B) = \max(\sup A, \sup B),$$

$$\inf(A \cup B) = \min(\inf A, \inf B).$$

3) If $A \cap B \neq \emptyset$, then $A \cap B$ is bounded and we have

$$\begin{split} \sup(A \cap B) &\leq \min(\sup A, \sup B),\\ \inf(A \cap B) &\geq \max(\inf A, \inf B). \end{split}$$

4) Let $A + B = \{x + y \mid x \in A \land y \in B\}$, then A + B is bounded and non-empty and we have

$$\sup(A+B) = \sup A + \sup B,$$

$$\inf(A+B) = \inf A + \inf B.$$

5) Let $-A = \{-x \mid x \in A\}$, then -A is bounded and nonempty and we have

$$\sup(-A) = -\inf A,$$

$$\inf(-A) = -\sup A.$$

:

1.1.15 Archimedes' axiom

 $\forall x \in \mathbb{R}, \forall y > 0, \exists n \in \mathbb{N}^* / n.y > x.$

Example 30 let x = 5 and y = 2. Find $n \in \mathbb{N}^*$ such that n.y > x, $n > \frac{x}{y} = \frac{5}{2} \Longrightarrow n > 2, 5$. Just take n = 3.

1.1.16 The greatest integer function (Floor function)

Definition 31 Let $x \in \mathbb{R}$. The greatest integer of x is the greatest integer less than or equal to x. It is noted E(x) or [x] or $\lfloor x \rfloor$.

 $\forall x \in \mathbb{R}, \exists n \in \mathbb{Z} / n \le x < n+1.$ [.]: $\mathbb{R} \longrightarrow \mathbb{Z} / [x] = E(x) = n.$

Example 32
$$E(2,7) = [2,7] = 2$$
 $(2 \le 2,7 < 3)$.
 $E(-3,1) = [-3,1] = -4$ $(-4 \le -3,1 < -3)$.

Property

$$\forall x \in \mathbb{R}, \ [x] \le x < [x] + 1,$$

then

$$\forall x \in \mathbb{R}, \ x - 1 < [x] \le x.$$

Graph of the greatest integer function

1.1.17 Density of \mathbb{Q} in \mathbb{R}

Theorem 33 (Density theorem)

Let $x, y \in \mathbb{R}$ be such that x < y, then $\exists q \in \mathbb{Q} / x < q < y$.

Conclusion 34 Between two distinct real numbers, there exists a rational.

So between two distinct real numbers, there exists an infinity of rational numbers.

1.1.18 Notion of topology in \mathbb{R}

Definition 35 (Adherent point)

Let A be a nonempty part of \mathbb{R} . We say that x is an adherent point of A if every open interval I containing x meets A (i.e. $I \cap A \neq \emptyset$). The set of adherent points of A is denoted \overline{A} : the closure of A.

 $x \in \overline{A} \iff \forall I \text{ open interval containing } x, I \cap A \neq \emptyset.$

Remark 36 1) $A \subset \overline{A}$.

2) $x \in \overline{A} \iff \forall \varepsilon > 0,]x - \varepsilon, x + \varepsilon [\cap A \neq \emptyset.$

Example 37 1)
$$A = [0, 1] \Longrightarrow \overline{A} = [0, 1]$$
.
2) $A =]-1, 1[\Longrightarrow \overline{A} = [-1, 1]$.
3) $A = \left\{\frac{1}{n} / n \in \mathbb{N}^*\right\} \Longrightarrow \overline{A} = \left\{\frac{1}{n} / n \in \mathbb{N}^*\right\} \cup \{0\}$

1.1.19 Application

Exercise 38 Let the set $A = \left\{ \frac{n+1}{n-2} / n \in \mathbb{N}, n \ge 3 \right\}$.

1) Prove that A is nonempty and bounded.

2) Using the characterization of the supremum and infimum, prove that $\sup A = 4$ and $\inf A = 1$.

3) Determine max A and min A if they exist.

4) Deduce the supremum and the infimum of the following sets :

$$B = \left\{ \frac{n+1}{n-2} + \frac{1}{2} \ / \ n \in \mathbb{N}, n \ge 3 \right\}$$

$$D = \left\{ \frac{n+1}{n-2} \ , \ (-1)^n \ / \ n \in \mathbb{N}, n \ge 3 \right\}.$$

Solution :

1) For n = 3, $x_3 = \frac{3+1}{3-2} = 4 \in A$, then A is nonempty. Now, we will prove that A is bounded. We first decompose the fraction $\frac{n+1}{n-2}$ in the following form: $\frac{n+1}{n-2} = a + \frac{b}{n-2}$,

$$\frac{n+1}{n-2} = \frac{a(n-2)+b}{n-2} = \frac{an-2a+b}{n-2},$$

by identification, we obtain

$$\begin{cases} a = 1\\ -2a+b = 1 \end{cases} \implies \begin{cases} a = 1,\\ b = 3, \end{cases}$$

then

$$\frac{n+1}{n-2} = 1 + \frac{3}{n-2}.$$

Using this decomposition, we will show that A is bounded.

$$n \ge 3 \Longrightarrow n-2 \ge 1 \Longrightarrow 0 \le \frac{1}{n-2} \le 1 \Longrightarrow 0 \le \frac{3}{n-2} \le 3,$$

 \mathbf{SO}

$$1 \le 1 + \frac{3}{n-2} \le 4 \Longrightarrow 1 \le \frac{n+1}{n-2} \le 4, \tag{1.1}$$

hence, A is bounded.

2) ${\cal A}$ is nonempty and bounded, so according to the axiom of the supremum and

the axiom of the infimum, $\sup A$ and $\inf A$ exist.

Now, we will prove that $\sup A = 4$:

From (1.1) 4 is an upper bound of A,

since $4 \in A$ and for all $\varepsilon > 0$ we have $4 > 4 - \varepsilon$,

so, from the characterization of the supremum, we deduce that $\sup A = 4$.

We will prove that $\inf A = 1$: We check if $1 \in A$: We suppose that $1 \in A \Longrightarrow \exists n \in \mathbb{N}, n \ge 3 / \frac{n+1}{n-2} = 1$ $\implies n+1 = n-2 \Longrightarrow 1 = -2$: absurd, then $1 \notin A$.

We will prove that $\inf A = 1$, using the characterization of the infimum :

$$\inf A = 1 \Longleftrightarrow \begin{cases} 1^{\circ} \ \forall x \in A, \ x \ge 1, \\ 2^{\circ} \ \forall \varepsilon > 0, \exists x_0 \in A \ / \ x_0 < 1 + \varepsilon, \end{cases}$$

or equivalently :

$$\inf A = 1 \Longleftrightarrow \begin{cases} 1^{\circ} \ \forall n \in \mathbb{N}, n \ge 3, \ \frac{n+1}{n-2} \ge 1, \\ 2^{\circ} \ \forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, n_0 \ge 3 \ / \ \frac{n_0+1}{n_0-2} < 1 + \varepsilon. \end{cases}$$

From (1.1) the condition 1°) is verified. Now, we will prove the condition 2°) : let $\varepsilon > 0$,

$$\begin{aligned} &\frac{n_0+1}{n_0-2} < 1+\varepsilon \Longleftrightarrow 1 + \frac{3}{n_0-2} < 1+\varepsilon > \Leftrightarrow \frac{3}{n_0-2} < \varepsilon \Leftrightarrow n_0 > \frac{3}{\varepsilon} + 2. \end{aligned}$$
Just take $n_0 = \left[\frac{3}{\varepsilon} + 2\right] + 1 = \left[\frac{3}{\varepsilon}\right] + 3 \ge 3,$
therefore, inf $A = 1.$

3) $\sup A = 4 \in A \Longrightarrow \max A = 4$. inf $A = 1 \notin A \Longrightarrow \min A$ does not exist.

4)
$$B = \left\{ \frac{n+1}{n-2} + \frac{1}{2} / n \in \mathbb{N}, n \ge 3 \right\} = \left\{ \frac{n+1}{n-2} / n \in \mathbb{N}, n \ge 3 \right\} + \left\{ \frac{1}{2} \right\},$$

then, $B = A + \left\{\frac{1}{2}\right\}$.

By the properties of the supremum and the infimum, B is nonempty and bounded, $\sup B$ et $\inf B$ exist and in addition we have

$$\sup B = \sup \left(A + \left\{ \frac{1}{2} \right\} \right) = \sup A + \sup \left\{ \frac{1}{2} \right\} = 4 + \frac{1}{2} = \frac{9}{2},$$
$$\inf B = \inf \left(A + \left\{ \frac{1}{2} \right\} \right) = \inf A + \inf \left\{ \frac{1}{2} \right\} = 1 + \frac{1}{2} = \frac{3}{2}.$$

$$D = \left\{ \frac{n+1}{n-2} , \, (-1)^n \ / \ n \in \mathbb{N}, n \ge 3 \right\},$$

$$D = \left\{ \frac{n+1}{n-2} / n \in \mathbb{N}, n \ge 3 \right\} \cup \{ (-1)^n / n \in \mathbb{N}, n \ge 3 \},$$

then, $D = A \cup \{ -1, 1 \}.$

By the properties of the supremum and the infimum, D is nonempty and bounded, sup D et inf D exist and in addition we have

$$\sup D = \sup(A \cup \{-1, 1\}) = \max(\sup A, \sup \{-1, 1\}) = \max(4, 1) = 4,$$

inf $D = \inf(A \cup \{-1, 1\}) = \min(\inf A, \inf \{-1, 1\}) = \min(1, -1) = -1.$

10

1.2 The set of complex numbers

1.2.1 Introduction

In \mathbb{R} , a negative number cannot be the square of a real number. We construct the set \mathbb{C} , called the set of complex numbers, containing \mathbb{R} , which equipped with the laws "+" and "×" is a commutative field and such that any element can be a square in \mathbb{C} (even negative real numbers).

Definition 39 A complex number is an ordered pair z = (x, y) such that $x, y \in \mathbb{R}$.

We write z = x + iy where $i^2 = -1$. i = (0, 1): is the pure imaginary number, $\operatorname{Re} z = x$: is the real part of z, $\operatorname{Im} z = y$: is the imaginary part of z.

Remark 40 - If y = 0, then z = x is a real number. - If x = 0, then z = iy is a pure imaginary number.

1.2.2 Operations on complex numbers

Let z = x + iy and $z' = x' + iy' \in \mathbb{C}$.

We define on \mathbb{C} , the addition by : z + z' = x + x' + i(y + y'), and the multiplication by : z.z' = (x+iy)(x'+iy') = (xx'-yy')+i(xy'+x'y). \mathbb{C} , equipped with these two operations is a commutative field.

Remark 41 If $z = x + iy \neq 0$, then $\frac{1}{z} = \frac{1}{x + iy} = \frac{x - iy}{(x + iy)(x - iy)} = \frac{x - iy}{x^2 + y^2} = \frac{x}{x^2 + y^2} + i\frac{-y}{x^2 + y^2}.$

1.2.3 The conjugate of a complex number

Let $z = x + iy \in \mathbb{C}$. The conjugate of z is the complex number $\overline{z} = x - iy$.

Properties : 1) $\forall z_1, z_2 \in \mathbb{C}, \ \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}.$ 2) $\forall z_1, z_2 \in \mathbb{C}, \ \overline{z_1.z_2} = \overline{z_1}.\overline{z_2}.$

1.2.4 The modulus of a complex number

The modulus of a complex number z=x+iy is a function from $\mathbb C$ to $\mathbb R_+$ defined as follows

 $\begin{array}{cccc} |.|: & \mathbb{C} & \longrightarrow & \mathbb{R}_+ \\ & z & \longrightarrow & |z| = \sqrt{z.\overline{z}} = \sqrt{x^2 + y^2}. \end{array}$

Remark 42 The modulus coincides with the absolute value when z is real.

Properties of modulus :

 $\begin{aligned} \forall z, z_1, z_2 \in \mathbb{C}, \text{ we have the following properties :} \\ 1) & |z| = 0 \iff z = 0. \\ 2) & |z_1.z_2| = |z_1| \cdot |z_2| \cdot \\ 3) & |z_1 + z_2| \le |z_1| + |z_2| \cdot \\ 4) & \forall z \neq 0, \left|\frac{1}{z}\right| = \frac{1}{|z|}. \end{aligned}$

Remark 43 We cannot order the set of complex numbers. So we cannot compare or write inequalities between two complex numbers.

1.2.5 Euler's formula

 $e^{i\theta} = \cos\theta + i\sin\theta, \ \theta \in \mathbb{R}.$

1.2.6 The complex exponential function

Let $z = x + iy \in \mathbb{C}$.

We set by definition

$$e^{z} = e^{x+iy} = e^{x}e^{iy} = e^{x}(\cos y + i\sin y).$$

Properties :

1) $\forall z_1, z_2 \in \mathbb{C}, e^{z_1+z_2} = e^{z_1} . e^{z_2}.$ 2) $\forall z \in \mathbb{C}, e^z \neq 0 \quad (e^z . e^{-z} = e^{z-.z} = e^0 = 1).$

1.2.7 Trigonometric form of a complex number

Let $z = x + iy \in \mathbb{C}$ such that $z \neq 0$, $|z| = \sqrt{x^2 + y^2} = r$.

The point M with coordinates (x, y) is called the image of the complex number z.

z is the affix of the point M.

$$\cos\theta = \frac{x}{r} = \frac{x}{\sqrt{x^2 + y^2}} = \frac{x}{|z|},$$

$$\sin\theta = \frac{y}{r} = \frac{y}{\sqrt{x^2 + y^2}} = \frac{y}{|z|}.$$

The number θ is defined to within 2π .

 θ is called the argument of z and is denoted arg z. Thus

$$\begin{array}{rcl} x & = & |z|\cos\theta, \\ y & = & |z|\sin\theta. \end{array}$$

Therefore

$$z = x + iy = |z|\cos\theta + i|z|\sin\theta = |z|(\cos\theta + i\sin\theta) = |z|e^{i\theta}.$$

If z = 0, so we have r = |z| = 0 and θ any argument.

Conclusion :

 $\begin{aligned} \forall z \in \mathbb{C}, \exists (r, \theta) \in \mathbb{R}_+ \times \mathbb{R} \ / \ z = r(\cos \theta + i \sin \theta) = re^{i\theta}, \\ \theta := \arg z \text{ and } r = |z|. \end{aligned}$

This representation is very useful for multiplication and division of complex numbers.

Indeed, $\forall z_1, z_2 \in \mathbb{C}$, we have

$$z_1.z_2 = r_1 e^{i\theta_1} . r_2 e^{i\theta_2} = r_1.r_2 e^{i(\theta_1 + \theta_2)},$$

$$\frac{z_1}{z_2} = \frac{r_1 e^{i\theta_1}}{r_2 e^{i\theta_2}} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}.$$

1.2.8 Moivre's formula

 $(e^{i\theta})^n = e^{in\theta} = \cos n\theta + i\sin n\theta, \forall \theta \in \mathbb{R}, \forall n \in \mathbb{N}.$

Remark 44 We have

 $e^{i\theta} = \cos \theta + i \sin \theta, \ \theta \in \mathbb{R},$ $e^{-i\theta} = \cos \theta - i \sin \theta,$ from which we deduce the following formulas :

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \quad \theta \in \mathbb{R},$$
$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}.$$

1.3 Exercises

Exercise 45 Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be an increasing function on \mathbb{R} and A a nonempty and bounded above subset of \mathbb{R} . We assume that f(A) is bounded above. Prove that $\sup f(A) \leq f(\sup A)$.

Solution :

Since A and f(A) are non-empty and bounded above subsets of \mathbb{R} , then, according to the supremum axiom, $\sup A$ and $\sup f(A)$ exist. On the other hand, we have $\forall x \in A, x \leq \sup A$.

Since the function f is increasing, we obtain

$$\forall x \in A, f(x) \le f(\sup A),$$

then, $f(\sup A)$ is an upper bound of f(A) and since $\sup f(A)$ is the smallest upper bound of f(A),

then we deduce that $\sup f(A) \leq f(\sup A)$.

14

1.3. EXERCISES

Exercise 46 Let the set $A = \left\{ \frac{1}{n} + \frac{1}{n^2}, n \in \mathbb{N}^* \right\}$.

- 1) Prove that A is non-empty and bounded.
- 2) Using the characterization of the supremum and infimum, prove that $\sup A = 2$ and $\inf A = 0$.
- **3**) Determine max A and min A if they exist.
- 4) Deduce the supremum and infimum of the set.

$$B = \left\{ \frac{n+1}{n^2} + 2 \ / \ n \in \mathbb{N}^* \right\}$$

 $\mathbf{Solution}:$

Let the set $A = \left\{ \frac{1}{n} + \frac{1}{n^2}, n \in \mathbb{N}^* \right\}.$ 1) We prove that A is non-empty and bounded. For n = 1, $x_1 = 2 \in A$, then $A \neq \emptyset$. We prove that A is bounded. We have $\forall n \in \mathbb{N}^*, \quad 0 \leq \frac{1}{n} \leq 1,$ $\forall n \in \mathbb{N}^*, \quad 0 \leq \frac{1}{n^2} \leq 1,$ then, $\forall n \in \mathbb{N}^*$, $0 \leq \frac{1}{n} + \frac{1}{n^2} \leq 2.....(*)$ hence, A is bounded.

2) We prove that $\sup A = 2$ and $\inf A = 0$.

A is a subset of \mathbb{R} non-empty and bounded, thus, according to the supremum and infimum axioms, $\sup A$ et inf A exist.

Now, we prove that $\sup A = 2$.

From (*), 2 is an upper bound of A.

Moreover, we have: $\forall \varepsilon > 0, \exists n = 1 \in \mathbb{N}^* / \frac{1}{n} + \frac{1}{n^2} = 2 > 2 - \varepsilon$,

then, according to the characterization of the supremum, $\sup A = 2$.

We prove that $\inf A = 0$: we use the characterization of the infimum.

$$\inf A = 0 \iff \begin{cases} 1^{\circ} \forall n \in \mathbb{N}^*, \frac{1}{n} + \frac{1}{n^2} \ge 0, \\ 2^{\circ} \forall \varepsilon > 0, \exists n \in \mathbb{N}^* / \frac{1}{n} + \frac{1}{n^2} < 0 + \varepsilon. \end{cases}$$

1°) It is satisfied according to (*). 2°) Let $\varepsilon > 0$, we have $\frac{1}{n} + \frac{1}{n^2} \le \frac{1}{n} + \frac{1}{n} = \frac{2}{n}$, so it is enough that $\frac{2}{n} < \varepsilon$,

$$\frac{2}{n} < \varepsilon \Longleftrightarrow n > \frac{2}{\varepsilon},$$

it is enough to take $n = \left[\frac{2}{\varepsilon}\right] + 1$, then $\inf A = 0$.

3) We determine $\max A$ and $\min A$ if they exist.

 $\sup A = 2 \in A \Longrightarrow \max A = 2.$

 $\inf A = 0 \notin A \text{ (otherwise } \exists n \in \mathbb{N}^* \ / \ \frac{1}{n} + \frac{1}{n^2} = \frac{n+1}{n^2} = 0 \Longrightarrow n = -1:$ absurd), then min A does not exist.

- 4) We deduce the supremum and infimum of the set $\binom{n+1}{n+1}$
- $B = \left\{ \frac{n+1}{n^2} + 2 / n \in \mathbb{N}^* \right\}.$

 $B = A + \{2\}$: it is a bounded and non-empty set,

 $\sup B = \sup A + \sup \{2\} = 2 + 2 = 4,$

$$\inf B = \inf A + \inf \{2\} = 0 + 2 = 2.$$

Exercise 47 Let the set $A = \left\{\frac{3n+2}{n+4}, n \in \mathbb{N}\right\}$.

1) Prove that A s non-empty and bounded.

2) Using the characterization of the supremum and infimum, show that $\sup A = 3$ and $\inf A = \frac{1}{2}$.

3) Determine max A and min A if they exist. 4) Deduce the supremum and infimum of the set $B = \left\{ \frac{3n+2}{n+4}, (-1)^n / n \in \mathbb{N} \right\}.$

Solution :

Let the set $A = \left\{\frac{3n+2}{n+4}, n \in \mathbb{N}\right\}.$

1) We prove that A is non-empty and bounded. Pour n = 0, $x_0 = \frac{1}{2} \in A$, then A is non-empty. Now, we prove that A is bounded:

 $\begin{aligned} \frac{3n+2}{n+4} &= a + \frac{b}{n+4} = 3 - \frac{10}{n+4}.\\ n \in \mathbb{N} \Longrightarrow n \ge 0 \Longrightarrow n+4 \ge 4 \Longrightarrow 0 \le \frac{1}{n+4} \le \frac{1}{4},\\ \frac{1}{2} \le 3 - \frac{10}{n+4} \le 3 \Longrightarrow \frac{1}{2} \le \frac{3n+2}{n+4} \le 3.....(*), \end{aligned}$

then, A is bounded.

16

2) Using the characterization of the supremum and infimum, show that $\sup A = 3$ et $\inf A = \frac{1}{2}$.

Since $A \neq \emptyset$ and bounded, thus according to the supremum and infimum axioms, sup A et inf A exist.

We prove that $\inf A = \frac{1}{2}$:

From (*), $\frac{1}{2}$ is a lower bound of A.

Moreover $\forall \varepsilon > 0, \exists n = 0 \in \mathbb{N} / \frac{3n+2}{n+4} = \frac{1}{2} < \frac{1}{2} + \varepsilon.$ Thus, according to the characterization of the infimum, $\inf A = \frac{1}{2}$.

We prove that $\sup A = 3$ using the characterization of the supremum

$$\sup A = 3 \iff \begin{cases} 1^{\circ} \ \forall n \in \mathbb{N}, \frac{3n+2}{n+4} \le 3, \\ 2^{\circ} \ \forall \varepsilon > 0, \exists n \in \mathbb{N} / \frac{3n+2}{n+4} > 3 - \varepsilon. \end{cases}$$

1°) Already proven in the first question.

 $\begin{array}{l} 2^{\circ}) \mbox{ Let } \varepsilon > 0, \\ \\ \frac{3n+2}{n+4} > 3 - \varepsilon \Longleftrightarrow n > \frac{10}{\varepsilon} - 4, \\ \\ \mbox{it is enough to take } n = \left[\left| \frac{10}{\varepsilon} - 4 \right| \right] + 1 \in \mathbb{N}. \end{array}$

3) Determine $\max A$ and $\min A$ if they exist.

$$\inf A = \frac{1}{2} \in A$$
, then $\min A = \frac{1}{2}$.

 $\sup A = 3 \notin A \text{ (otherwise } 3 \in A \iff \frac{3n+2}{n+4} = 3 \iff 2 = 12 \text{ : absurd}),$ thus max A does not exist.

4) Deduce the supremum and infimum of the set : $B = \left\{ \frac{3n+2}{n+4}, (-1)^n / n \in \mathbb{N} \right\}.$

 $B = A \cup \{-1, 1\}$: it is a bounded and non-empty set.

$$\sup B = \max(\sup A, \sup \{-1, 1\}) = \max(3, 1) = 3,$$

inf $B = \min(\inf A, \inf \{-1, 1\}) = \min(\frac{1}{2}, -1) = -1.$

Exercise 48 1) Determine the general form of the solutions of the equation :

$$z^n=a$$
 , $n\in\mathbb{N}^*$, $a,z\in\mathbb{C}$

2) Find all solutions to the equation $z^3 = 1$.

Solution :

1) $z^n = a$, $n \in \mathbb{N}^*$, $a, z \in \mathbb{C}$.

Complex numbers are written in trigonometric form. : $z = \rho e^{i\theta}$, $\rho = |z|$ and $\theta = \arg z$, $a = re^{i\alpha}$, r = |a| and $\alpha = \arg a$.

$$z^n = a \Longleftrightarrow (\rho e^{i\theta})^n = r e^{i\alpha} \Longleftrightarrow \rho^n e^{in\theta} = r e^{i\alpha},$$

then, $\rho^n = r$ and $n\theta = \alpha + 2k\pi$,

hence,
$$\rho = \sqrt[n]{r}$$
 and $\theta = \frac{\alpha + 2k\pi}{n}$, $k = 0, 1, \dots, (n-1)$.

Therefore, the equation admits n solutions :

$$S = \left\{ z_k = \sqrt[n]{r} e^{i\frac{\alpha + 2k\pi}{n}}, \quad k = 0, 1, \dots, (n-1) \right\}.$$

2) We are looking for all the solutions of the equation $z^3 = 1$.

$$1 = 1e^{i0} \Longrightarrow r = 1 \text{ and } \alpha = 0,$$

 $z_k = e^{i\frac{2k\pi}{3}}, \ k = 0, 1, 2.$

then, the equation $z^3 = 1$ admits three solutions :

$$z_0 = e^{i0} = 1,$$

$$z_1 = e^{i\frac{2\pi}{3}} = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} = -\frac{1}{2} + i\frac{\sqrt{3}}{2},$$

$$z_2 = e^{i\frac{4\pi}{3}} = \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3} = -\frac{1}{2} - i\frac{\sqrt{3}}{2}.$$

Exercise 49 1) Find the solutions to the equation : $z^3 = 1 - i\sqrt{3}$. 2) Solve in \mathbb{C} the following equation : $z^2 - 2iz + 1 - i = 0$.

Solution :

1) The solutions of $z^3 = 1 - i\sqrt{3}$: $z^3 = 1 - i\sqrt{3} \iff \rho^3 e^{i3\theta} = 2e^{-i\frac{\pi}{3}},$ then, $\rho^3 = 2$ and $3\theta = -\frac{\pi}{3} + 2k\pi,$

1.3. EXERCISES

hence,
$$\rho = \sqrt[3]{2}$$
 and $\theta = \frac{-\frac{\pi}{3} + 2k\pi}{3} = -\frac{\pi}{9} + \frac{2k\pi}{3}, \quad k = 0, 1, 2.$
$$S = \left\{ z_k = \sqrt[3]{2}e^{i\left(-\frac{\pi}{9} + \frac{2k\pi}{3}\right)}, \quad k = 0, 1, 2. \right\}.$$

Therefore, the equation $z^3 = 1 - i\sqrt{3}$ admits 3 solutions :

$$z_{0} = \sqrt[3]{2}e^{i\left(-\frac{\pi}{9}\right)} = \sqrt[3]{2}\left(\cos\frac{-\pi}{9} + i\sin\frac{-\pi}{9}\right),$$

$$z_{1} = \sqrt[3]{2}e^{i\left(-\frac{\pi}{9} + \frac{2\pi}{3}\right)} = \sqrt[3]{2}\left(\cos\frac{5\pi}{9} + i\sin\frac{5\pi}{9}\right),$$

$$z_{2} = \sqrt[3]{2}e^{i\left(-\frac{\pi}{9} + \frac{4\pi}{3}\right)} = \sqrt[3]{2}\left(\cos\frac{11\pi}{9} + i\sin\frac{11\pi}{9}\right).$$

2) We solve the following equation in \mathbb{C} : $z^2 - 2iz + 1 - i = 0$. $\Delta = -8 + 4i = \omega^2 = (x + iy)^2 = x^2 - y^2 + 2ixy$, $|-8 + 4i| = |x + iy|^2 \iff x^2 + y^2 = \sqrt{80} = 4\sqrt{5}$,

by identification, we obtain :

$$\begin{cases} x^2 - y^2 &= -8\\ x^2 + y^2 &= 4\sqrt{5}\\ 2xy &= 4 \end{cases} \implies \begin{cases} x^2 = -4 + 2\sqrt{5}\\ y^2 = 4 + 2\sqrt{5} \end{cases} \implies \begin{cases} x = \pm\sqrt{-4 + 2\sqrt{5}},\\ y = \pm\sqrt{4 + 2\sqrt{5}}. \end{cases}$$

Since xy = 2, then x and y are of the same sign,

then,
$$\omega = \sqrt{-4 + 2\sqrt{5}} + i\sqrt{4 + 2\sqrt{5}}$$
,
or $\omega = -\sqrt{-4 + 2\sqrt{5}} - i\sqrt{4 + 2\sqrt{5}}$.
We choose $\omega = \sqrt{-4 + 2\sqrt{5}} + i\sqrt{4 + 2\sqrt{5}}$,
therefore, $z_1 = \frac{2i + \omega}{2}$ and $z_2 = \frac{2i - \omega}{2}$.

20

Chapter 2

The numerical sequences

2.1 Introduction

Definition 50 A sequence is a function from \mathbb{N} to \mathbb{R}

 $\begin{array}{ccccc} U: & \mathbb{N} & \longrightarrow & \mathbb{R} \\ & n & \longrightarrow & U(n) & = U_n. \end{array}$

We note the sequence of general term U_n by $(U_n)_n$.

Remark 51 $(U_n)_n = (V_n)_n \iff (\forall n \in \mathbb{N}, U_n = V_n).$

2.1.1 Sequences given as a function of n

A sequence can be given as a function of n.

Example 52 : $U_n = \frac{n+1}{2n+3}, \quad n \in \mathbb{N},$ $U_0 = \frac{1}{3}, \quad U_1 = \frac{2}{5}, \quad U_2 = \frac{3}{7}, \dots$

2.1.2 Recursive sequences

Recursive sequences are sequences where each term is defined based on previous terms. We can define a recursive sequence by giving the first term $U_0 = \alpha$ and the recurrence relation $U_{n+1} = f(U_n)$ for all $n \in \mathbb{N}$, where f is a function from $D \subseteq \mathbb{R}$ in \mathbb{R} assuming, of course, that $f(D) \subseteq D$ for the sequence to be well-defined.

Example 53

$$\begin{cases} U_0 &= 1, \\ U_{n+1} &= \frac{U_n + 2}{2U_n + 3}, \quad \forall n \in \mathbb{N}. \end{cases}$$
$$U_{n+1} = f(U_n) = \frac{U_n + 2}{2U_n + 3}, \text{ avec } f: D = [0, +\infty[\longrightarrow \mathbb{R}/f(x) = \frac{x + 2}{2x + 3}]$$
$$U_1 = \frac{U_0 + 2}{2U_0 + 3} = \frac{3}{5}, \dots.$$

2.1.3 Operations on sequences

The addition : $(U_n)_n + (V_n)_n = (U_n + V_n)_n$.

The multiplication : $(U_n).(V_n) = (U_n.V_n)_n$.

We note $F(\mathbb{N}, \mathbb{R})$ the set of numerical sequences.

 $F(\mathbb{N},\mathbb{R})$ equipped with addition and multiplication is a unital commutative ring.

2.2 The different types of sequences

2.2.1 Monotonous sequences

- A sequence $(U_n)_n$ is increasing $\iff (\forall n \in \mathbb{N}, U_{n+1} \ge U_n).$

- A sequences $(U_n)_n$ is strictly increasing $\iff (\forall n \in \mathbb{N}, U_{n+1} > U_n).$
- A sequence $(U_n)_n$ in decreasing $\iff (\forall n \in \mathbb{N}, U_{n+1} \leq U_n).$
- A sequence $(U_n)_n$ is strictly decreasing $\iff (\forall n \in \mathbb{N}, U_{n+1} < U_n).$
- A sequence $(U_n)_n$ is monotonous $\iff (U_n)_n$ is increasing or decreasing.
- A sequence $(U_n)_n$ is constant or stationary $\iff (\forall n \in \mathbb{N}, U_{n+1} = U_n).$

2.2.2 The bounded sequences

- A sequence $(U_n)_n$ is bounded above $\iff (\exists M \in \mathbb{R}, \forall n \in \mathbb{N}, U_n \leq M)$.

- A sequence $(U_n)_n$ is bounded below $\iff (\exists m \in \mathbb{R}, \forall n \in \mathbb{N}, U_n \ge m).$

- A sequence $(U_n)_n$ is bounded $\iff (U_n)_n$ is bounded above and bounded below.

$$\iff (\exists M, m \in \mathbb{R}, \forall n \in \mathbb{N}, m \le U_n \le M).$$
$$\iff (\exists \alpha > 0, \forall n \in \mathbb{N}, |U_n| \le \alpha).$$

 $B(\mathbb{N},\mathbb{R})$ is the set of bounded sequences, it is a subring of $F(\mathbb{N},\mathbb{R})$.

22

Example 54 Study the monotony of the sequence of general term $U_n = \frac{n-1}{3n+2}$, $n \in \mathbb{N}$.

$$U_{n+1} - U_n = \frac{n}{3n+5} - \frac{n-1}{3n+2} = \frac{5}{(3n+5)(3n+2)} > 0,$$

then, $(U_n)_n$ is increasing.

Example 55 Study the monotony of the sequence of general term

$$U_n = \frac{1}{n}, \quad n \in \mathbb{N}^*.$$
$$U_{n+1} - U_n = \frac{1}{n+1} - \frac{1}{n} = \frac{-1}{(n+1)n} < 0,$$

hence, $(U_n)_n$ is decreasing.

Example 56 Prove that the sequence of general term $U_n = \frac{n}{2n+1}$, $n \in \mathbb{N}$ is bounded.

$$\begin{split} \forall n \in \mathbb{N}, 2n \leq 2n+1 \Longrightarrow \frac{1}{2n+1} \leq \frac{1}{2n} \Longrightarrow \frac{n}{2n+1} \leq \frac{n}{2n} = \frac{1}{2}, \\ then, \ 0 \leq \frac{n}{2n+1} \leq \frac{1}{2}, \\ therefore, \ (U_n)_n \quad is \ bounded. \end{split}$$

Example 57 Let the sequence of general term $U_n = (-1)^n$ $n \in \mathbb{N}$.

This sequence is neither increasing nor decreasing, it is an alternating sequence, but it is bounded because we have $\forall n \in \mathbb{N}, -1 \leq U_n \leq 1$.

2.3 The nature of sequences

2.3.1 Convergent sequences

Definition 58 We say that the sequence $(U_n)_n$ is convergent if there exists $\ell \in \mathbb{R}$ such that

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Longrightarrow |U_n - \ell| < \varepsilon).$$

We say that the sequence $(U_n)_n$ converges to the limit ℓ and we write : $\lim_{n \to +\infty} U_n = \ell$.

Example 59 Using the definition, show that $\lim_{n \to +\infty} \frac{1}{n} = 0$. $\lim_{n \to +\infty} \frac{1}{n} = 0 \iff (\forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \forall n \in \mathbb{N}^*, (n \ge N \Longrightarrow \left| \frac{1}{n} - 0 \right| < \varepsilon)).$ $\left| \frac{1}{n} \right| < \varepsilon \iff \frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon},$ which means that $n \ge \left[\frac{1}{\varepsilon} \right] + 1 = N,$ then, it is sufficient to take $N = \left[\frac{1}{\varepsilon} \right] + 1 \in \mathbb{N}^*.$

2.3.2 Infinite limits

$$\lim_{n \to +\infty} U_n = +\infty \iff (\forall A > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Longrightarrow U_n > A)).$$
$$\lim_{n \to +\infty} U_n = -\infty \iff (\forall A > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Longrightarrow U_n < -A)).$$

Example 60 1) $\lim_{n \to +\infty} (2n+1) = +\infty.$ 2) $\lim_{n \to +\infty} (-n+1) = -\infty.$

2.3.3 Divergent sequences

A divergent sequence is a sequence that does not converge, meaning a divergent sequence is one whose limit is infinite or does not exist.

Example 61 Let the sequence of general term $U_n = (-1)^n$.

we have $U_{2n} = 1$ and $U_{2n+1} = -1$, then $\lim_{n \to +\infty} U_n$ does not exist.

2.4 Main properties of sequences

Theorem 62 Every convergent numerical sequence has a unique limit.

Theorem 63 Every convergent numerical sequence is bounded.

Remark 64 The converse of the theorem is not true, that is, a bounded sequence is not necessarily convergent.

Example 65 The sequence of general term $U_n = (-1)^n$ is bounded but it is not convergent.

Theorem 66 Let $(U_n)_n$ be a bounded sequence and $(V_n)_n$ a sequence such that $\lim_{n \to +\infty} V_n = 0$, then $\lim_{n \to +\infty} U_n \cdot V_n = 0$.

Example 67 $\lim_{n \to +\infty} \frac{\sin n}{n+1} = 0$ since $\sin n$ is bounded and $\lim_{n \to +\infty} \frac{1}{n+1} = 0$.

Theorem 68 (Three Sequences Theorem)

Let $(V_n)_n$ and $(W_n)_n$ be two sequences that converge to the same limit ℓ and let $(U_n)_n$ a sequence such that for all $n \in \mathbb{N}, V_n \leq U_n \leq W_n$, then the sequence $(U_n)_n$ converges to ℓ .

Example 69 Prove that the sequence of general term $U_n = \frac{\cos n}{n^2 + 1}$ is convergent and calculate its limit.

$$\forall n \in \mathbb{N}, -1 \le \cos n \le 1 \Longrightarrow \frac{-1}{n^2 + 1} \le \frac{\cos n}{n^2 + 1} \le \frac{1}{n^2 + 1}$$

 $\lim_{n \longrightarrow +\infty} \frac{-1}{n^2 + 1} = \lim_{n \longrightarrow +\infty} \frac{1}{n^2 + 1} = 0, \text{ so according to the three sequence theorem, } \lim_{n \longrightarrow +\infty} \frac{\cos n}{n^2 + 1} = 0.$

Theorem 70 Every real number is the limit of a sequence of rational numbers, *i.e.*

$$\forall x \in \mathbb{R}, \exists (q_n) \subset \mathbb{Q} / \lim_{n \longrightarrow +\infty} q_n = x$$

Indeed, let $x \in \mathbb{R}, \forall n \in \mathbb{N}^*, x - \frac{1}{n} < x$,

according to the density theorem, there exists $q_n \in \mathbb{Q} / x - \frac{1}{n} < q_n < x$, so according to the three sequence theorem we obtain $\lim_{n \longrightarrow +\infty} q_n = x$.

Theorem 71 - Any increasing and bounded above sequence converges towards its spremum, i.e. $\lim_{n \to +\infty} U_n = \ell = \sup E$, où $E = \{U_n \in \mathbb{R} | n \in \mathbb{N}\}$.

- Any decreasing and bounded below sequence converges towards its infimum,, i.e. $\lim_{n \to +\infty} U_n = \ell = \inf E.$ **Example 72** Let the sequence of general term $U_n = \frac{n-1}{3n+2}, n \in \mathbb{N}.$

It has already been shown that $(U_n)_n$ is increasing.

We also have $\frac{n-1}{3n+2} \leq \frac{n}{3n} = \frac{1}{3}$, then $(U_n)_n$ is bounded above.

 $(U_n)_n$ being increasing and bounded above, therefore according to the previous

theorem, it converges towards its supremum, $\sup E = \lim_{n \to +\infty} U_n = \frac{1}{3}$.

Theorem 73 Let $(U_n)_n$ and $(V_n)_n$ be two sequences which converge respectively to ℓ and ℓ' , then the sequences $(U_n+V_n)_n, (\lambda U_n)_n, \lambda \in \mathbb{R}$ and $(U_n.V_n)_n$ converge and we have

1)
$$\lim_{n \to +\infty} (U_n + V_n) = \ell + \ell'.$$

2)
$$\lim_{n \to +\infty} (\lambda U_n) = \lambda \ell.$$

3)
$$\lim_{n \to +\infty} (U_n \cdot V_n) = \ell \cdot \ell'.$$

4) If $\ell' \neq 0$ and $V_n \neq 0$, then the sequence $\left(\frac{U_n}{V_n}\right)_n$ converges and $\lim_{n \to +\infty} \frac{U_n}{V_n} = \frac{\ell}{\ell'}.$

Theorem 74 Let $\ell \in \mathbb{R}$.

- If $\lim_{n \to +\infty} U_n = \ell$ and $\forall n \in \mathbb{N}, U_n \ge 0$, then $\ell \ge 0$. - If $\lim_{n \to +\infty} U_n = \ell$ and $\forall n \in \mathbb{N}, U_n \le 0$, then $\ell \le 0$.

Remark 75 - If $(U_n)_n$ and $(V_n)_n$ are two convergence sequences such that for every $n \in \mathbb{N}$, $U_n \leq V_n$, then we have $\lim_{n \to +\infty} U_n \leq \lim_{n \to +\infty} V_n$.

- If $\lim_{n \to +\infty} U_n = \ell$ and $\forall n \in \mathbb{N}, U_n > 0$, then $\ell \ge 0$.

Proposition 76 If $\lim_{n \to +\infty} U_n = \ell$, then $\lim_{n \to +\infty} |U_n| = |\ell|$

The converse is not true if $\ell \neq 0$ and it is true if $\ell = 0$.

2.4.1 Arithmetic sequence and geometric sequence

arithmetic sequence of common difference r :

 $U_0, U_1 = U_0 + r, U_1 = U_0 + 2r, \dots, U_n = U_0 + nr.$

The partial sum of the terms of an arithmetic sequence:

$$S_n = U_0 + U_1 + \dots + U_n = (U_0 + U_n)\frac{(n+1)}{2}$$

Geometric sequence with common ratio q :

$$\begin{split} &U_0, U_1 = U_0 q, U_1 = U_0 q^2, \dots, U_n = U_0 q^n.\\ &\text{If } U_0 = 1, \text{ then } U_n = q^n:\\ &\text{- If } -1 < q < 1, \text{ then } \lim_{n \longrightarrow +\infty} q^n = 0,\\ &\text{- If } q = 1, \text{ then } \lim_{n \longrightarrow +\infty} q^n = 1,\\ &\text{- If } q = -1, \text{ then } \lim_{n \longrightarrow +\infty} q^n \text{ does not exist,}\\ &\text{- If } q > 1, \text{ then } \lim_{n \longrightarrow +\infty} q^n = +\infty,\\ &\text{- If } q < -1, \text{ then } \lim_{n \longrightarrow +\infty} q^n \text{ does not exist.} \end{split}$$

Conclusion :

 $(U_n)_n = (q^n)_n$ converges $\iff q \in]-1,1].$

The partial sum of the terms of a geometric sequence:

$$S_n = U_0 + U_1 + \dots + U_n = U_0 \left(\frac{1 - q^{n+1}}{1 - q}\right), \text{ if } q \neq 1$$

If $q = 1$, then $S_n = U_0(n+1)$.

2.4.2 Study of recursive sequences

Let $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ be a function, $U_0 \in D$ and $U_{n+1} = f(U_n), \forall n \in \mathbb{N}$. We assume that $f(D) \subset D$ so that the sequence is well-defined.

- If f is increasing, then $(U_n)_n$ is monotonous :
 - if $U_1 \ge U_0 \Longrightarrow (U_n)_n$ is increasing,
 - if $U_1 \leq U_0 \Longrightarrow (U_n)_n$ is decreasing.

Study of convergence

We assume that f is monotonous and continuous on D. If the sequence $(U_n)_n$ converges to ℓ , then ℓ verifies the equation $\ell = f(\ell)$, so to find this limit, we just need to solve this equation.

2.4.3 Properties

1)
$$\lim_{n \to +\infty} U_n = +\infty, \forall n \in \mathbb{N}, U_n \leq V_n \Longrightarrow \lim_{n \to +\infty} V_n = +\infty.$$
$$\lim_{n \to +\infty} U_n = -\infty, \forall n \in \mathbb{N}, V_n \leq U_n \Longrightarrow \lim_{n \to +\infty} V_n = -\infty.$$
2)
$$\lim_{n \to +\infty} U_n = +\infty, \lambda > 0 \Longrightarrow \lim_{n \to +\infty} \lambda U_n = +\infty.$$
$$\lim_{n \to +\infty} U_n = +\infty, \lambda < 0 \Longrightarrow \lim_{n \to +\infty} \lambda U_n = -\infty.$$
3)
$$\lim_{n \to +\infty} U_n = \pm\infty, \forall n \in \mathbb{N}, U_n \neq 0 \Longrightarrow \lim_{n \to +\infty} \frac{1}{U_n} = 0.$$
4)
$$\lim_{n \to +\infty} U_n = 0, \forall n \in \mathbb{N}, U_n > 0 \Longrightarrow \lim_{n \to +\infty} \frac{1}{U_n} = +\infty.$$
5)
$$\lim_{n \to +\infty} U_n = +\infty \land \lim_{n \to +\infty} V_n = \ell \text{ (or } +\infty) \Longrightarrow \lim_{n \to +\infty} (U_n + V_n) = +\infty.$$
6)
$$\lim_{n \to +\infty} U_n = +\infty \land \lim_{n \to +\infty} V_n = \ell > 0 \Longrightarrow \lim_{n \to +\infty} U_n V_n = +\infty.$$

Undetermined cases

1)
$$\lim_{n \to +\infty} U_n = +\infty \land \lim_{n \to +\infty} V_n = -\infty \Longrightarrow \lim_{n \to +\infty} (U_n + V_n) =?$$

2)
$$\lim_{n \to +\infty} U_n = \pm \infty \land \lim_{n \to +\infty} V_n = 0 \Longrightarrow \lim_{n \to +\infty} (U_n \cdot V_n) =?$$

2.5 Subsequences (or extracted sequences)

Definition 77 Let $(U_n)_n$ be a numerical sequence and $(n_k)_k$ a strictly increasing sequence of integers. (U_{n_k}) is said to be a subsequence of $(U_n)_n$.

Example 78 Let the sequence of general term $U_n = \frac{1}{n}$, $n \in \mathbb{N}$. $U_{2n} = \frac{1}{2n}$, $U_{2n+1} = \frac{1}{2n+1}$, $U_{3n} = \frac{1}{3n}$, $(U_{2n}), (U_{2n+1})$ and (U_{3n}) are subsequences of (U_n) .

Theorem 79 If (U_n) is a sequence converging to ℓ , then every subsequence of (U_n) converges to the same limit ℓ .

Remark 80 The converse of this theorem is not true, meaning that one can extract a convergent subsequence from a divergent sequence.

28

Example 81 $U_n = (-1)^n$ diverges while its two subsequences $(U_{2n} = 1)$ and $(U_{2n+1} = -1)$ converge.

Theorem 82 The sequence $(U_n)_n$ converges to $\ell \iff$ the subsequences (U_{2n}) and (U_{2n+1}) converge to the same limit ℓ .

Remark 83 If $\lim_{n \to +\infty} U_{2n} \neq \lim_{n \to +\infty} U_{2n+1}$, then the sequence $(U_n)_n$ diverges.

Example 84 Let $U_n = (-1)^n$.

 $\lim_{n \to +\infty} U_{2n} = 1 \neq \lim_{n \to +\infty} U_{2n+1} = -1, \text{ then } (U_n)_n \text{ diverges.}$

Theorem 85 (Bolzano-Weierstrass theorem)

Every bounded numerical sequence has a convergent subsequence.

Example 86 The sequence with general term $U_n = (-1)^n$ diverges but it is bounded. Its two subsequences $(U_{2n} = 1)$ and $(U_{2n+1} = -1)$ converge.

2.6 Adjacent sequences

Definition 87 Let $(U_n)_n$ and $(V_n)_n$ be two numerical sequences. We say that $(U_n)_n$ and $(V_n)_n$ are two adjacent sequences if one is increasing and the other decreasing and $\lim_{n \to +\infty} (U_n - V_n) = 0.$

Theorem 88 If $(U_n)_n$ and $(V_n)_n$ are two adjacent numerical sequences, then they converge to the same limit.

2.7 The Cauchy sequences

Definition 89 The numerical sequence $(U_n)_n$ is said to be a Cauchy sequence if

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall p, q \in \mathbb{N}, (p \ge N \land q \ge N \Longrightarrow |U_p - U_q| < \varepsilon),$$

or

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n, p \in \mathbb{N}, (n \ge N \Longrightarrow |U_{n+p} - U_n| < \varepsilon).$$

Theorem 90 Let $(U_n)_n$ be a convergente sequence, then $(U_n)_n$ is a Cauchy sequence.

Theorem 91 (Cauchy's Criterion)

Let $(U_n)_n$ be a Cauchy numerical sequence, then $(U_n)_n$ is a convergente sequence. We say that \mathbb{R} is a complete space.

Remark 92 To show that a numerical sequence is convergent, it suffices to show that it is a Cauchy sequence.

2.8 Exercises

Exercise 93 Let (U_n) be a sequence defined by

$$\begin{cases} U_1 &= 1, U_2 = 2, \\ U_n &= \frac{U_{n-1} + 2U_{n-2}}{3}, n \ge 3. \end{cases}$$

We set : $\forall n \geq 2$, $V_n = U_n - U_{n-1}$.

- 1) Prove by induction that : $\forall n \ge 2$, $V_n = \left(\frac{-2}{3}\right)^{n-2}$.
- 2) Prove that the sequence defined by : $\forall n \geq 2$, $S_n = V_2 + V_3 + \dots + V_n$ is convergent and calculate its limit.
- 3) Deduce that the sequence (U_n) is convergent and calculate its limit.

Solution :

Let (U_n) be the sequence defined by

$$\left\{ \begin{array}{rrrr} U_1 & = & 1 \;, \; U_2 = 2, \\ U_n & = & \frac{U_{n-1} + 2U_{n-2}}{3} \;, \; n \geq 3. \end{array} \right.$$

We set : $\forall n \ge 2$, $V_n = U_n - U_{n-1}$.

1) We prove by induction that :
$$\forall n \ge 2$$
, $V_n = \left(\frac{-2}{3}\right)^{n-2}$.
For $n = 2, V_2 = U_2 - U_1 = 2 - 1 = 1 = \left(\frac{-2}{3}\right)^{2-2}$: it is verified.

We assume that the property is true up to order n and we show that it is true for order (n + 1).

We assume that
$$V_n = \left(\frac{-2}{3}\right)^{n-2}$$
 and we show that $V_{n+1} = \left(\frac{-2}{3}\right)^{n-1}$.
 $V_{n+1} = U_{n+1} - U_n = \frac{U_n + 2U_{n-1}}{3} - U_n = -\frac{2}{3}(U_n - U_{n-1}),$
 $V_{n+1} = -\frac{2}{3}V_n = -\frac{2}{3}\left(\frac{-2}{3}\right)^{n-2} = \left(\frac{-2}{3}\right)^{n-1}.$
Thus, $\forall n \ge 2$, $V_n = \left(\frac{-2}{3}\right)^{n-2}.$

2) We prove that the sequence defined by : $\forall n \geq 2$, $\ S_n = V_2 + V_3 + \ldots + V_n$ is convergent :
2.8. EXERCISES

$$S_n = V_2 + V_3 + \dots + V_n = 1 + \left(\frac{-2}{3}\right) + \left(\frac{-2}{3}\right)^2 + \dots + \left(\frac{-2}{3}\right)^{n-2},$$

It is the sum of (n-1) consecutive terms of a geometric sequence with ratio $q = \frac{-2}{3}$,

therefore,
$$S_n = \frac{1 - \left(\frac{-2}{3}\right)^{n-1}}{1 - \left(\frac{-2}{3}\right)} = \frac{3}{5} \left(1 - \left(\frac{-2}{3}\right)^{n-1}\right).$$

Since $\left|\frac{-2}{3}\right| < 1$, then $\lim_{n \to +\infty} \left(\frac{-2}{3}\right)^{n-1} = 0$, hence, $\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \frac{3}{5} \left(1 - \left(\frac{-2}{3}\right)^{n-1}\right) = \frac{3}{5}$.

3) We deduce that the sequence
$$(U_n)$$
 is convergent :

$$S_n = V_2 + V_3 + \dots + V_n = (U_2 - U_1) + (U_3 - U_2) + \dots + (U_n - U_{n-1}),$$

$$S_n = U_n - U_1 = U_n - 1, \text{ thus } U_n = S_n + 1.$$

Since (S_n) converge, then (U_n) converge and we have

$$\lim_{n \to +\infty} U_n = \lim_{n \to +\infty} (S_n + 1) = \frac{3}{5} + 1 = \frac{8}{5}.$$

Exercise 94 Let (U_n) be a sequence defined by

$$\begin{cases} U_0 &= 1, \\ U_{n+1} &= \frac{1+U_n}{3+U_n} , \ n \in \mathbb{N}. \end{cases}$$

- 1) Prove that $\forall n \in \mathbb{N}$, $0 \leq U_n \leq 1$.
- 2) Prove that (U_n) is monotonic.
- 3) Deduce that (U_n) is convergent and calculate its limit ℓ .
- 4) Let $E = \{U_n \mid n \in \mathbb{N}\}$. Determine $\sup E$ and $\inf E$.

Solution :

Let (U_n) be the sequence defined by

$$\begin{cases} U_0 = 1, \\ U_{n+1} = \frac{1+U_n}{3+U_n}, \ n \in \mathbb{N}. \end{cases}$$

1) Prove by induction that $\forall n \in \mathbb{N}$, $0 \leq U_n \leq 1$,

for n = 0, $0 \le U_0 = 1 \le 1$: it is verified.

We assume that the property is true up to order n and we show that it is true for order (n + 1).

We assume that $0 \le U_n \le 1$ and we show that $0 \le U_{n+1} \le 1$.

$$U_n \ge 0 \Longrightarrow U_{n+1} = \frac{1+U_n}{3+U_n} \ge 0.$$
$$U_{n+1} - 1 = \frac{1+U_n}{3+U_n} - 1 = \frac{-2}{U_n+3} \le 0$$
then, $0 \le U_{n+1} \le 1.$

Therefore, $\forall n \in \mathbb{N}$, $0 \le U_n \le 1$.

2) We prove that (U_n) is monotonic :

$$U_{n+1} = \frac{1+U_n}{3+U_n} = f(U_n).$$

We set $f(x) = \frac{x+1}{x+3}, \ x \in D = [0, +\infty[.$

We set $f(x) = \frac{1}{x+3}$, $x \in D = [0, +\infty[$. We have $f(D) \subset D$ and $f'(x) = \frac{2}{(x+3)^2} > 0$,

then, f is increasing, hence $(U_n)_n$ is monotonic.

Since
$$U_1 = \frac{U_0 + 1}{U_0 + 3} = \frac{1}{2} < U_o = 1$$
, thus $(U_n)_n$ is decreasing.

3) We deduce that (U_n) is convergent :

 $(U_n)_n$ is decreasing and bounded below, then it converges to its infimum, i.e. $\lim_{n \longrightarrow +\infty} U_n = \ell = \inf(U_n)$.

We calculate the limit of (U_n) :

$$\ell = \lim_{n \to +\infty} U_n \Longrightarrow \ell = f(\ell) \Longrightarrow \ell = \frac{\ell+1}{\ell+3} \iff \ell^2 + 2\ell - 1 = 0,$$

$$\Delta = 8, \ \ell_1 = -1 + \sqrt{2} > 0 \ \text{and} \ \ell_2 = -1 - \sqrt{2} < 0,$$

since $0 \le U_n \le 1$, then $\ell = -1 + \sqrt{2}.$

4) Let
$$E = \{U_n \mid n \in \mathbb{N}\}\)$$
, we determine $\sup E$ and $\inf E$:
 $\sup E = U_0 = 1$, (since $(U_n)_n$ is decreasing, $\forall n \in \mathbb{N}, U_0 \ge U_n$ and $U_0 \in E$).
 $\inf E = \ell = -1 + \sqrt{2}$.

2.8. EXERCISES

Exercise 95 Using adjacent sequences, show that the following sequence is convergent :

$$U_n = 1 - \frac{1}{2} + \frac{1}{3} - \dots + \frac{(-1)^{n-1}}{n} , \quad n \in \mathbb{N}^*.$$

Solution :

We show that (U_{2n}) and (U_{2n+1}) are adjacent :

i.e. one is increasing, the other is decreasing, and $\lim_{n \to +\infty} (U_{2n+1} - U_{2n}) = 0.$

• We study the monotonicity of (U_{2n}) :

$$U_{2n+2} - U_{2n} = \left(1 + \ldots + \frac{(-1)^{2n-1}}{2n} + \frac{(-1)^{2n}}{2n+1} + \frac{(-1)^{2n+1}}{2n+2}\right) - \left(1 + \ldots + \frac{(-1)^{2n-1}}{2n}\right),$$

$$U_{2n+2} - U_{2n} = \frac{1}{2n+1} - \frac{1}{2n+2} = \frac{1}{(2n+1)(2n+2)} > 0,$$

then (U_{2n}) is increasing.

• We study the monotonicity of (U_{2n+1}) :

$$U_{2n+3} - U_{2n+1} = \left(1 + \ldots + \frac{(-1)^{2n}}{2n+1} + \frac{(-1)^{2n+1}}{2n+2} + \frac{(-1)^{2n+2}}{2n+3}\right) - \left(1 + \ldots + \frac{(-1)^{2n}}{2n+1}\right),$$

$$U_{2n+2} - U_{2n} = -\frac{1}{2n+2} + \frac{1}{2n+3} = \frac{-1}{(2n+2)(2n+3)} < 0,$$

then, (U_{2n+1}) is decreasing.

•
$$\lim_{n \longrightarrow +\infty} (U_{2n+1} - U_{2n}) = \lim_{n \longrightarrow +\infty} \frac{1}{2n+1} = 0.$$

hence, (U_{2n}) and (U_{2n+1}) are adjacent,

therefore, (U_{2n}) and (U_{2n+1}) converge to the same limit and so (U_n) is convergent.

Exercise 96 1) Let (U_n) be the sequence defined by : $U_n = \sum_{k=1}^n \frac{\cos k}{2^k}$, $n \in \mathbb{N}^*$.

Prove that (U_n) is a Cauchy sequence. What can we deduce?

2) Let
$$(U_n)$$
 the sequence defined by : $U_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}, n \in \mathbb{N}^*.$

Prove that (U_n) is not a Cauchy sequence and deduce its limit.

Solution :

1) Let (U_n) be the sequence defined by : $U_n = \sum_{k=1}^n \frac{\cos k}{2^k}$, $n \in \mathbb{N}^*$.

We prove that (U_n) is a Cauchy sequence :

- $((U_n)$ is a Cauchy sequence) \iff
- $(\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n, p \in \mathbb{N}, (n \ge N \Longrightarrow |U_{n+p} U_n| < \varepsilon).$

Let
$$\varepsilon > 0$$
,
 $|U_{n+p} - U_n| = \left| \sum_{k=1}^{n+p} \frac{\cos k}{2^k} - \sum_{k=1}^n \frac{\cos k}{2^k} \right|$,
 $|U_{n+p} - U_n| = \left| \frac{\cos(n+1)}{2^{n+1}} + \frac{\cos(n+2)}{2^{n+2}} + \dots + \frac{\cos(n+p)}{2^{n+p}} \right|$,
 $|U_{n+p} - U_n| \le \left| \frac{\cos(n+1)}{2^{n+1}} \right| + \left| \frac{\cos(n+2)}{2^{n+2}} \right| + \dots + \left| \frac{\cos(n+p)}{2^{n+p}} \right|$,
 $|U_{n+p} - U_n| \le \frac{1}{2^{n+1}} + \frac{1}{2^{n+2}} + \dots + \frac{1}{2^{n+p}} = \frac{1}{2^{n+1}} \left(1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{p-1}} \right)$
 $|U_{n+p} - U_n| \le \frac{1}{2^{n+1}} \left(1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{p-1}} \right) = \frac{1}{2^{n+1}} \left(\frac{1 - \left(\frac{1}{2}\right)^p}{1 - \frac{1}{2}} \right)$,
 $|U_{n+p} - U_n| \le \frac{1}{2^n} \left(1 - \left(\frac{1}{2}\right)^p \right) < \frac{1}{2^n}$,
so it is enough to take $\frac{1}{2^n} < \varepsilon$.

$$\begin{split} &\frac{1}{2^n} < \varepsilon \Longleftrightarrow 2^n > \frac{1}{\varepsilon} \Longleftrightarrow n \ln 2 > \ln \frac{1}{\varepsilon} \Longleftrightarrow n > \frac{\ln \frac{1}{\varepsilon}}{\ln 2}, \\ &n > \frac{\ln \frac{1}{\varepsilon}}{\ln 2} \Longrightarrow n \ge \left[\left| \frac{\ln \frac{1}{\varepsilon}}{\ln 2} \right| \right] + 1, \end{split}$$

so it is enough to take $N = \left[\left| \frac{\ln \frac{1}{\varepsilon}}{\ln 2} \right| \right] + 1.$

Then (U_n) is a Cauchy sequence and since \mathbb{R} is a complete space, then (U_n) is a convergent sequence.

 $\begin{array}{l} 2) \ {\rm Let} \ (U_n) \ {\rm the \ sequence \ defined \ by} : \ U_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \ , \quad n \in \mathbb{N}^*. \\ {\rm We \ prove \ that} \ (U_n) \ {\rm is \ not \ a \ Cauchy \ sequence} : \\ ((U_n) \ {\rm is \ not \ a \ Cauchy \ sequence}) \iff \\ (\exists \varepsilon > 0, \forall N \in \mathbb{N}^*, \exists p, q \in \mathbb{N}^*, (p \ge N \land q \ge N \ {\rm and} \ |U_p - U_q| \ge \varepsilon). \\ {\rm Let} \ N \in \mathbb{N}^*, \ {\rm we \ set} \ p = 2N \ge N \ {\rm and} \ q = N \ge N, \\ |U_p - U_q| = |U_{2N} - U_N| \left| \left(1 + \frac{1}{2} + \ldots + \frac{1}{N} + \ldots + \frac{1}{2N} \right) - \left(1 + \frac{1}{2} + \ldots + \frac{1}{N} \right) \right|, \\ |U_p - U_q| = \frac{1}{N+1} + \frac{1}{N+2} + \ldots + \frac{1}{2N} \ge \frac{1}{2N} + \frac{1}{2N} + \ldots + \frac{1}{2N} = N \frac{1}{2N} = \frac{1}{2}, \\ |U_p - U_q| \ge \frac{1}{2} = \varepsilon, \end{array}$

2.8. EXERCISES

so, it is enough to take $\varepsilon = \frac{1}{2}$.

therefore (U_n) is not a Cauchy sequence, which implies that (U_n) diverge. Since (U_n) is increasing, so it is not bounded (otherwise it would be convergent), thus, $\lim_{n \longrightarrow +\infty} U_n = +\infty$. 36

Chapter 3

Functions of one real variable. Limit and continuity

3.1 Generalities

3.1.1 Definition of a function

Definition 97 A numerical function on a set X is any mapping from X to the set. \mathbb{R} of real numbers. If $X \subseteq \mathbb{R}$, we say that f is a numerical function of a real variable.

$$\begin{array}{cccc} f: & X \subseteq \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longrightarrow & f(x). \end{array}$$

3.1.2 Domain of definition

Let f be a real function of a real variable. The domain of definition of the function f is the set defined by

$$D_f = \{x \in \mathbb{R} / f(x) \text{ is defined}\}.$$

Example 98 1) $f(x) = e^{\frac{1}{x^2-1}}$,

$$D_f = \left\{ x \in \mathbb{R}/x^2 - 1 \neq 0 \right\} = \left\{ x \in \mathbb{R}/x \neq \pm 1 \right\} = \mathbb{R} \setminus \{-1, 1\}.$$

2) $f(x) = \frac{\ln(x+1)}{x},$
 $D_f = \left\{ x \in \mathbb{R}/x + 1 > 0 \land x \neq 0 \right\} = \left\{ x \in \mathbb{R}/x > -1 \land x \neq 0 \right\} = \left] -1, 0[\cup]0, +\infty[.$

3.1.3 Graph of a real function

Let $f: X \subseteq \mathbb{R} \longrightarrow \mathbb{R}$, be a numerical function.defined on X.

The graph of the function f is a part of \mathbb{R}^2 defined by the following set

 $Gr(f) = \left\{ (x, f(x)) \in \mathbb{R}^2 / x \in X \right\} \subset \mathbb{R}^2.$

Example 99 $f : \mathbb{R} \longrightarrow \mathbb{R} / f(x) = x^2$

 $Gr(f) = \left\{ (x, x^2) \in \mathbb{R}^2 \ / \ x \in \mathbb{R} \right\}$: It is a parabola.

3.1.4 Algebraic operations on functions

- Let f and g be two real functions defined on $X \subset \mathbb{R}$.

$$(f = g) \iff (\forall x \in X, f(x) = g(x)).$$

- We note $F(X, \mathbb{R})$ the set of functions from X to \mathbb{R} ,

 $F(X,\mathbb{R}) = \{f : X \longrightarrow \mathbb{R}\}.$

- We define two internal operations, addition and multiplication on $F(X,\mathbb{R})$ by

$$\forall x \in X, (f+g)(x) = f(x) + g(x),$$
$$(f.g)(x) = f(x).g(x).$$

 $F(X,\mathbb{R})$ equipped with these two internal operations is a unitary commutative ring.

- We define an external operation on $F(X, \mathbb{R})$ by

 $\forall \lambda \in \mathbb{R}, \forall x \in X, (\lambda f)(x) = \lambda.f(x).$

- $F(X, \mathbb{R})$ equipped with addition and this external operation is a vector space on \mathbb{R} .

- We define the order relation on $F(X, \mathbb{R})$ by

 $(f \le g) \iff (\forall x \in X, f(x) \le g(x)).$

This relation is not a relation of total order.

Indeed, we take $f : \mathbb{R} \longrightarrow \mathbb{R} / f(x) = x^2$ and $g : \mathbb{R} \longrightarrow \mathbb{R}/g(x) = x$. We notice that $f \nleq g$ and $g \nleq f$.

3.1.5 Even, odd and periodic functions

Let f be a function defined on a symmetric interval I with respect to 0.

- f is even $\iff \forall x \in I, f(-x) = f(x),$
- f is odd $\iff \forall x \in I, f(-x) = -f(x).$
- A function $f : \mathbb{R} \longrightarrow \mathbb{R}$ is said to be periodic if

 $\exists P > 0, \forall x \in \mathbb{R}, f(x+P) = f(x).$

We say that P is the period of f.

If P is a period of f, then every number of the form kP $(k \in \mathbb{N}^*)$ is a period of f i.e., $\forall x \in \mathbb{R}, f(x+kP) = f(x)$.

Example 100 1) $f(x) = \cos x, x \in \mathbb{R}$ is an even and periodic function of period $P = 2\pi$.

 $\forall x \in \mathbb{R}, \cos(-x) = \cos(x) \text{ and } \cos(x+2\pi) = \cos(x).$

2) $f(x) = \sin x, x \in \mathbb{R}$ is an odd and periodic function of period $P = 2\pi$.

 $\forall x \in \mathbb{R}, \sin(-x) = -\sin(x) \text{ and } \sin(x+2\pi) = \sin(x).$

Remark 101 1) The graph of an even function has an axis of symmetry (the y-axis).

2) The graph of an odd function has a center of symmetry (the origin (O)).

3.1.6 Bounded functions and monotonic functions

Let $f: X \subset \mathbb{R} \longrightarrow \mathbb{R}$ be a function.

- f is bounded above $\iff (\exists M \in \mathbb{R}, \forall x \in X, f(x) \le M).$
- f is bounded below $\iff (\exists m \in \mathbb{R}, \forall x \in X, f(x) \ge m).$
- f is bounded $\iff f$ is bounded above and bounded below.
- f is bounded $\iff (\exists M, m \in \mathbb{R}, \forall x \in X, m \le f(x) \le M).$
- f is bounded $\iff (\exists \alpha > 0, \forall x \in X, |f(x)| \le \alpha).$
- f is increasing $\iff (\forall x, y \in X, x \le y \implies f(x) \le f(y)).$
- f is strictly increasing $\iff (\forall x, y \in X, x < y \implies f(x) < f(y)).$
- f is decreasing $\iff (\forall x, y \in X, x \le y \implies f(x) \ge f(y)).$
- f is strictly decreasing $\iff (\forall x, y \in X, x < y \implies f(x) > f(y)).$

Example 102 1) $f(x) = \cos x, \forall x \in \mathbb{R}, |\cos x| \le 1$,

 $g(x) = \sin x, \ \forall x \in \mathbb{R}, \ |\sin x| \le 1,$

 $\cos x$ and $\sin x$ are bounded functions on \mathbb{R} .

2) f(x) = x², it is an even function but it is not bounded on ℝ.
3) f(x) = ¹/_x, it is an odd, unbounded function on ℝ*.

3.2 Limit of a function at point x_0

Definition 103 Let $x_0 \in \mathbb{R}$. A part $V \subset \mathbb{R}$ is a neighborhood of x_0 if it contains an open interval containing x_0 .

Definition 104 We say that a function f, defined in the neighborhood of x_0 except maybe in x_0 , has a limit $\ell \in \mathbb{R}$ at point x_0 if

$$\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in D_f, x \neq x_0, (|x - x_0| < \alpha \Longrightarrow |f(x) - \ell| < \varepsilon)$$

We write $\lim_{x \longrightarrow x_0} f(x) = \ell$

Hence

$$\lim_{x \to x_0} f(x) = \ell \Leftrightarrow (\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in X, x \neq x_0, (|x - x_0| < \alpha \Longrightarrow |f(x) - \ell| < \varepsilon))$$

Example 105 1) $\lim_{x \to 1} (2x+1) = 3$ $\Leftrightarrow (\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in \mathbb{R}, x \neq 1, (|x-1| < \alpha \Longrightarrow |2x+1-3| < \varepsilon)).$ Let $\varepsilon > 0$, $|2x+1-3| < \varepsilon \iff |2x-2| < \varepsilon \iff 2 |x-1| < \varepsilon \iff |x-1| < \frac{\varepsilon}{2} = \alpha,$ then it suffices to take $\alpha = \frac{\varepsilon}{2}.$ 2) $\lim_{x \to 0} x^2 = 0 \Leftrightarrow (\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in \mathbb{R}, x \neq 0, (|x-0| < \alpha \Longrightarrow |x^2 - 0| < \varepsilon)).$ Let $\varepsilon > 0$, $|x^2| < \varepsilon \iff x^2 < \varepsilon \iff \sqrt{x^2} < \sqrt{\varepsilon} \iff |x| < \sqrt{\varepsilon} = \alpha,$ then it suffices to take $\alpha = \sqrt{\varepsilon}.$

3.2.1 The limit of f to the right and to the left of x_0

Let f be a numerical function.

x

The limit of f to the right of x_0 : Let f be a function defined to the right of x_0 ,

$$\lim_{x \to x_0} f(x) = \ell \Leftrightarrow (\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in D_f, (0 < x - x_0 < \alpha \Longrightarrow |f(x) - \ell| < \varepsilon)).$$

The limit of f to the left of x_0 : Let f be a function defined to the left of x_0 ,

$$\lim_{x \to x_0} f(x) = \ell \Leftrightarrow (\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in D_f, (-\alpha < x - x_0 < 0 \Longrightarrow |f(x) - \ell| < \varepsilon)).$$

Conclusion: Let f be a function defined to the right and to the left of x_0 ,

$$\lim_{x \longrightarrow x_0} f(x) = \ell \Leftrightarrow \left(\lim_{x \longrightarrow x_0} f(x) = \lim_{x \longrightarrow x_0} f(x) = \ell \right).$$

Example 106 Let $f(x) = \frac{|x|}{x}$, $x_0 = 0$, $D_f = \mathbb{R}^*$.

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} = \frac{x}{x} = 1,$$
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} = \frac{-x}{x} = -1$$

then $\lim_{x \to 0} f(x) \neq \lim_{x \to 0} f(x)$ and so $\lim_{x \to x_0} f(x)$ does not exist.

3.2.2 Extension of the notion of limit

Case where x_0 is infinite

$$1) \lim_{x \to +\infty} f(x) = \ell \iff (\forall \varepsilon > 0, \exists B > 0, \forall x \in X, (x > B \Longrightarrow |f(x) - \ell| < \varepsilon)).$$

$$2) \lim_{x \to -\infty} f(x) = \ell \iff (\forall \varepsilon > 0, \exists B > 0, \forall x \in X, (x < -B \Longrightarrow |f(x) - \ell| < \varepsilon)).$$

$$3) \lim_{x \to +\infty} f(x) = +\infty \iff (\forall A > 0, \exists B > 0, \forall x \in X, (x > B \Longrightarrow f(x) > A)).$$

$$4) \lim_{x \to +\infty} f(x) = -\infty \iff (\forall A > 0, \exists B > 0, \forall x \in X, (x > B \Longrightarrow f(x) < A)).$$

$$5) \lim_{x \to -\infty} f(x) = +\infty \iff (\forall A > 0, \exists B > 0, \forall x \in X, (x < -B \Longrightarrow f(x) < -A)).$$

$$6) \lim_{x \to -\infty} f(x) = -\infty \iff (\forall A > 0, \exists B > 0, \forall x \in X, (x < -B \Longrightarrow f(x) > A)).$$

Case where x_0 is finite and the limit infinite

$$1) \lim_{x \longrightarrow x_0} f(x) = +\infty$$

$$\iff (\forall A > 0, \exists \alpha > 0, \forall x \in X, x \neq x_0, (|x - x_0| < \alpha \Longrightarrow f(x) > A)).$$

$$2) \lim_{x \longrightarrow x_0} f(x) = -\infty$$

$$\iff (\forall A > 0, \exists \alpha > 0, \forall x \in X, x \neq x_0, (|x - x_0| < \alpha \Longrightarrow f(x) < -A)).$$

3.3 Main theorems on limits

Theorem 107 (uniqueness of the limit)

If f admits a limit ℓ at the point x_0 , so this limit is unique.

Theorem 108 Let $f : X \longrightarrow \mathbb{R}$, x_0 an adherent point of X and $\ell \in \mathbb{R}$ (or $\ell = \pm \infty$) then, we have

$$\lim_{x \longrightarrow x_0} f(x) = \ell \iff \left(\forall (x_n) \subset X, \left(\lim_{n \longrightarrow +\infty} x_n = x_0 \Longrightarrow \lim_{n \longrightarrow +\infty} f(x_n) = \ell \right) \right).$$

Remark 109 We use this theorem to show that the limit of some functions does not exist.

Example 110 Prove that $\lim_{x \to 0} \sin \frac{1}{x}$ does not exist. We take the sequence $x_n = \frac{1}{n\pi + \frac{\pi}{2}}, n \in \mathbb{N}$, $\lim_{n \to +\infty} x_n = \lim_{n \to +\infty} \frac{1}{n\pi + \frac{\pi}{2}} = 0$,

3.3. MAIN THEOREMS ON LIMITS

$$\lim_{n \to +\infty} f(x_n) = \lim_{n \to +\infty} \sin(n\pi + \frac{\pi}{2}) = \lim_{n \to +\infty} (-1)^n : \text{ does not exist.}$$

Then
$$\lim_{x \to 0} \sin \frac{1}{x} \text{ does not exist.}$$

We show in the same way that
$$\lim_{x \to 0} \cos \frac{1}{x} \text{ does not exist,}$$

we take
$$x_n = \frac{1}{n\pi}, n \in \mathbb{N}^*$$
.

Theorem 111 Let $f, g: X \longrightarrow \mathbb{R}$ and x_0 an adherent point of X (or $x_0 = \pm \infty$). If g is bounded and $\lim_{x \longrightarrow x_0} f(x) = 0$, then $\lim_{x \longrightarrow x_0} (f.g)(x) = 0$.

Example 112
$$\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0.$$

Indeed, $\sin \frac{1}{x}$ is bounded and $\lim_{x \to 0} x^2 = 0.$

Theorem 113 Let $f, g : X \longrightarrow \mathbb{R}$ and x_0 an adherent point of X (or $x_0 = \pm \infty$).

$$If \lim_{x \longrightarrow x_0} f(x) = \ell \in \mathbb{R} \text{ and } \lim_{x \longrightarrow x_0} g(x) = \ell' \in \mathbb{R}, \text{ then}$$

$$1) \lim_{x \longrightarrow x_0} (f + g)(x) = \ell + \ell'.$$

$$2) \lim_{x \longrightarrow x_0} (f \cdot g)(x) = \ell \cdot \ell'.$$

$$3) \lim_{x \longrightarrow x_0} \lambda f(x) = \lambda \ell.$$

$$4) \lim_{x \longrightarrow x_0} \frac{1}{f(x)} = \frac{1}{\ell} \quad (\forall x \in X, f(x) \neq 0 \text{ and } \ell \in \mathbb{R}^*).$$

$$5) \lim_{x \longrightarrow x_0} f(x) = \pm \infty \text{ and } \forall x \in X, f(x) \neq 0 \Longrightarrow \lim_{x \longrightarrow x_0} \frac{1}{f(x)} = 0.$$

Remark 114 If $\forall x \in X$, $f(x) \leq g(x)$ then $\ell \leq \ell'$.

Undetermined cases

1) $+\infty - \infty =?$ 2) $0.\infty =?$ 3) $1^{\infty} =?$

Example 115 1)
$$\lim_{x \to a} \frac{x-a}{x^2-a^2} = \lim_{x \to a} \frac{x-a}{(x-a)(x+a)} = \lim_{x \to a} \frac{1}{x+a} = \frac{1}{2a}.$$
2)
$$\lim_{x \to +\infty} \left(1 + \frac{a}{x}\right)^x, \quad a \in \mathbb{R},$$

$$\lim_{x \to +\infty} \left(1 + \frac{a}{x}\right)^x = \lim_{x \to +\infty} e^{x \ln\left(1 + \frac{a}{x}\right)} = e^{x \lim_{x \to +\infty} x \ln\left(1 + \frac{a}{x}\right)} = e^{x \lim_{x \to +\infty} a \frac{\ln\left(1 + \frac{a}{x}\right)}{\frac{a}{x}}}$$

$$= e^a.$$

Remark 116 We recall that

1)
$$h(x) = (f(x))^{g(x)} = e^{g(x) \ln(f(x))},$$

 $D_h = \{x \in \mathbb{R}/f(x) > 0\} \cap D_g.$
2) $f(x) = \sqrt{x}, \quad D_f = [0, +\infty[.$
3) $g(x) = \sqrt[3]{x}, \quad D_g = \mathbb{R}.$

Theorem 117 Let x_0 an adherent point of X and the functions $f, g, h : X \longrightarrow \mathbb{R}$ such that $\forall x \in X, g(x) \leq f(x) \leq h(x)$.

If $\lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = \ell$, then $\lim_{x \to x_0} f(x) = \ell$.

3.4 Continuous functions

3.4.1 Definition of the continuity of a function

Definition 118 Let $f: X \longrightarrow \mathbb{R}$ and $x_0 \in X = D_f$.

$$\begin{split} f \ is \ continuous \ at \ the \ point \ x_0 & \Longleftrightarrow \lim_{x \longrightarrow x_0} f(x) = f(x_0) \\ \Leftrightarrow \left(\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in X, x \neq x_0, (|x - x_0| < \alpha \Longrightarrow |f(x) - f(x_0)| < \varepsilon) \right). \end{split}$$

Remark 119 1) We study the continuity of the function f at the point x_0 which belongs to the domain of definition of f i.e. $x_0 \in D_f$.

2) f is continuous on X if it is continuous at every point $x_0 \in X$.

Example 120 1) f(x) = c, the constant function is continuous on \mathbb{R} . Indeed,

 $\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in \mathbb{R}, x \neq x_0, (|x - x_0| < \alpha \Longrightarrow |f(x) - f(x_0)| = |c - c| = 0 < \varepsilon).$

2) f(x) = x, the identity function is continuous on \mathbb{R} . Indeed,

 $\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in \mathbb{R}, x \neq x_0, (|x - x_0| < \alpha \implies |f(x) - f(x_0)| = |x - x_0| < \varepsilon = \alpha).$

3)
$$f(x) = \sin x$$
, is continuous on \mathbb{R} . Indeed,
 $\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in \mathbb{R}, x \neq x_0, (|x - x_0| < \alpha \Longrightarrow |\sin x - \sin x_0| < \varepsilon),$
We have $|\sin x - \sin x_0| = \left| 2\sin(\frac{x - x_0}{2})\cos(\frac{x + x_0}{2}) \right| \le 2 \left| \sin(\frac{x - x_0}{2}) \right| \le 2 \left| \frac{x - x_0}{2} \right| \le |x - x_0| < \varepsilon = \alpha, \text{ since we have } |\sin y| \le |y|, \forall y \in \mathbb{R}.$

3.4.2 Right and left continuity of the function at x_0

Right-hand continuity of the function f at x_0

$$\begin{split} f \text{ is right-continuous at } x_0 & \Longleftrightarrow \lim_{x \to x_0} f(x) = f(x_0) \\ \Leftrightarrow (\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in X, (0 < x - x_0 < \alpha \Longrightarrow |f(x) - f(x_0)| < \varepsilon)) \,. \\ \text{Leftt-hand continuity of the function } f \text{ at } x_0 \\ f \text{ is left-continuous at } x_0 & \Longleftrightarrow \lim_{x \to x_0} f(x) = f(x_0) \\ \Leftrightarrow (\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in X, (-\alpha < x - x_0 < 0 \Longrightarrow |f(x) - f(x_0)| < \varepsilon)) \,. \end{split}$$

Conclusion

f is continuous at point $x_0 \iff f$ is continuous from the right and from the left at x_0 ,

$$\lim_{x \to x_0} f(x) = f(x_0) \Leftrightarrow \left(\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = f(x_0) \right).$$

3.4.3 Theorems and properties of continuous functions

Theorem 121 Let $f: X \longrightarrow \mathbb{R}$ and $x_0 \in X = D_f$.

 $f \text{ is continuous at point } x_0 \iff \left(\forall (x_n) \subset X, \left(\lim_{n \to +\infty} x_n = x_0 \Longrightarrow \lim_{n \to +\infty} f(x_n) = f(x_0) \right) \right).$

Theorem 122 Let $f, g: X \longrightarrow \mathbb{R}$ and $x_0 \in X = D_f = D_g$.

If f and g are continuous at point x_0 , then

- 1) (f+g) is continuous at point x_0 .
- 2) (f.g) is continuous at point x_0 .
- 3) $\lambda f \ (\lambda \in \mathbb{R})$ is continuous at point x_0 .
- 4) |f| is continuous at point x_0 .
- 5) $\frac{f}{g}$ is continuous at point x_0 (if $g(x) \neq 0$).

Remark 123 The function f(x) = x is continuous on \mathbb{R} ,

then $g(x) = x^n$ $(n \in \mathbb{N})$ is continuous on \mathbb{R} , therefore $h(x) = \sum_{i=0}^n a_i x^i$ is continuous on \mathbb{R} .

Theorem 124 Let $f : X \longrightarrow \mathbb{R}, g : Y \longrightarrow \mathbb{R}/f(X) \subset Y$ and $x_0 \in X$. We define the function $g \circ f : X \longrightarrow \mathbb{R}$ by $\forall x \in X, (g \circ f)(x) = g(f(x)).$

If f is continuous at x_0 and g is continuous at $f(x_0)$, then $g \circ f$ is continuous at x_0 .

Example 125 Let the function defined by

$$f(x) = \begin{cases} \frac{|\sin x|}{x}, & x \neq 0\\ 1, & x = 0 \end{cases}$$

Study the continuity of f on D_f .

 $D_f = \mathbb{R}$

Continuity of f on \mathbb{R}^* :

f is continuous on \mathbb{R}^* because it is the composition and the product of continuous functions on \mathbb{R}^* .

Continuity of f at point $x_0 = 0$: f(0) = 1,

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{\sin x}{x} = 1 = f(0),$$
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{-\sin x}{x} = -1 \neq f(0).$$
Conclusion :

f is not continuous at 0.

3.4.4 Main properties of continuous functions on an interval

Theorem 126 Any continuous numerical function on a bounded closed interval [a, b] is bounded.

Remark 127 This theorem is not true if the interval is not closed or is not bounded.

Example 128 The function $f(x) = \frac{1}{x}$ is continuous on [0,1], but it is not bounded on [0,1].

Theorem 129 Any continuous numerical function on a bounded closed interval [a, b], reaches its supremum and infimum at least once,

i.e. there exist $x_1, x_2 \in [a, b]$ such that $f(x_1) = \sup_{x \in [a, b]} f(x)$ and $f(x_2) = \inf_{x \in [a, b]} f(x)$.

 $x \in [a,b]$

Remark 130 This theorem is not true if the interval is not closed or is not bounded.

Example 131 The function $f(x) = x^2$ is continuous on]-1, 1[,

 $\begin{array}{l} \mbox{it is bounded}: \forall x \in \]-1, 1[\,, 0 \leq f(x) < 1, \\ \mbox{it reaches its infimum}: \inf_{x \in \]-1, 1[} f(x) = 0 = f(0) \ et \ 0 \in \]-1, 1[\,, 1] \end{array}$

but it does not reach its supremum :

 $\sup_{x \in]-1,1[} f(x) = 1 = f(1) = f(-1) \text{ but } 1, -1 \notin]-1,1[.$

Theorem 132 (Intermediate Value Theorem)

Let $f : [a,b] \longrightarrow \mathbb{R}$ be a continuous function such that f(a).f(b) < 0, then there exists $c \in [a,b] / f(c) = 0$.

Example 133 1) Prove that the equation $x - 2 + \ln x = 0$ admits a solution in $]1, \sqrt{e}[$.

2) Prove that this solution is unique.

Solution

1) We set $f(x) = x - 2 + \ln x$, $D_f = [0, +\infty[$.

f is continuous on $]0, +\infty[$ because it is the sum of continuous functions on $]0, +\infty[$, especially f is continuous on $[1, \sqrt{e}]$. On the other hand, we have $f(1).f(\sqrt{e}) < 0$. So according to the intermediate value theorem, there exists

 $c \in [1, \sqrt{e}[/ f(c) = 0.$

2) To prove that the solution c is unique, it is enough to show that f is strictly monotonic.

Since $f'(x) = 1 + \frac{1}{x} > 0, \forall x \in D_f$, then f is strictly increasing, so the point c is unique.

Theorem 134 (Generalized Intermediate Value Theorem)

Let I be any interval of \mathbb{R} and let $f : I \longrightarrow \mathbb{R}$ be a continuous function. Let $x_1, x_2 \in I$ such that $x_1 < x_2$, then $\forall y_0 \in]f(x_1), f(x_2)[, \exists x_0 \in]x_1, x_2[/ y_0 = f(x_0)]$.

Theorem 135 Let I be any interval of \mathbb{R} and let $f : I \longrightarrow \mathbb{R}$ be a continuous function, then f(I) is an interval.

Remark 136 1) If f is a continuous and increasing function on [a,b], then f([a,b]) = [f(a), f(b)].

2) If f is a continuous and decreasing function on [a,b], then f([a,b]) = [f(b), f(a)].

3) In general $f([a,b]) \neq [f(a), f(b)]$.

4) If f is a continuous function on [a, b], then f([a, b]) = [m, M], where $m = \inf_{x \in [a, b]} f(x)$ and $M = \sup_{x \in [a, b]} f(x)$.

3.4.5 Extension by continuity

The goal is to describe the extension of a function to a larger domain while maintaining its continuity.

Definition 137 Let $f : X \longrightarrow \mathbb{R}$ and $x_0 \notin X = D_f$ such that f is defined in the neighborhood of x_0 . We assume that $\lim_{x \longrightarrow x_0} f(x) = \ell$ (ℓ finite).

Then, the function $\widetilde{f}: X \cup \{x_0\} \longrightarrow \mathbb{R}$ defined by

$$\widetilde{f}(x) = \begin{cases} f(x), & x \in X, \\ \ell, & x = x_0, \end{cases}$$

is continuous at x_0 .

f is said to be the extension of f by continuity at point x_0 .

Example 138 Let $f(x) = \frac{\sin x}{x}$ be the function defined on $D_f = \mathbb{R}^*$.

Let $x_0 = 0 \notin D_f$.

 $\lim_{x \to 0} f(x) = \lim_{x \to x_0} \frac{\sin x}{x} = 1,$

then f admits an extension by continuity at the point $x_0 = 0$ and its extension is $\tilde{f} : \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$\widetilde{f}(x) = \begin{cases} \frac{\operatorname{sm} x}{x}, & x \neq 0, \\ 1, & x = 0. \end{cases}$$

3.4.6 Uniform continuity of a function on an interval

Definition 139 Let I be an interval and $f : I \longrightarrow \mathbb{R}$. We say that f is uniformly continuous on I if

 $\forall \varepsilon > 0, \exists \alpha > 0, \forall x, x' \in I, (|x - x'| < \alpha \Longrightarrow |f(x) - f(x')| < \varepsilon).$

Remark 140 Uniform continuity is a property of the function over the entire interval I, whereas continuity can be defined at a point x_0 .

Example 141 1) $f(x) = c, (c \in \mathbb{R})$ is uniformly continuous on \mathbb{R} .

2) $f(x) = x, (x \in \mathbb{R})$ is uniformly continuous on \mathbb{R} .

3) $f(x) = \sin x, (x \in \mathbb{R})$ is uniformly continuous on \mathbb{R} .

Theorem 142 If f is uniformly continuous on I, then f is continuous on I.

Remark 143 The converse of this theorem is not true.

Example 144 The function $f(x) = \frac{1}{x}$ is continuous on [0,1], but it is not uniformly continuous on [0,1].

Indeed, f is not uniformly continuous on $[0,1] \iff$

 $\begin{aligned} (\exists \varepsilon > 0, \forall \alpha > 0, \exists x, x' \in]0, 1], & (|x - x'| < \alpha \text{ and } |f(x) - f(x')| \ge \varepsilon)). \\ Let \alpha > 0, we set x = \frac{1}{n} \in]0, 1] \quad and \quad x' = \frac{1}{2n} \in]0, 1], \\ we choose n \in \mathbb{N}^* \text{ such that } |x - x'| < \alpha, \\ |x - x'| < \alpha \Longleftrightarrow \left| \frac{1}{n} - \frac{1}{2n} \right| < \alpha \Leftrightarrow \frac{1}{2n} < \alpha \Leftrightarrow n > \frac{1}{2\alpha}, \\ therefore, it is enough to take n = \left[\frac{1}{2\alpha} \right] + 1 \in \mathbb{N}^*. \\ |f(x) - f(x')| = |n - 2n| = n \ge 1 = \varepsilon, \\ so just take \varepsilon = 1. \\ Thus f is not uniformly continuous on]0, 1]. \end{aligned}$

Theorem 145 If f is continuous on a closed bounded interval [a, b], then f is uniformly continuous on [a, b].

Theorem 146 (Fixed point Theorem)

Let $f : [a,b] \longrightarrow [a,b]$ be a continuous function, then there exists $x_0 \in [a,b]$ / $f(x_0) = x_0$.

 x_0 is called a fixed point of f, and it is the abscissa of the point of intersection of the graph of f with the first bisector (y = x).

3.4.7 Lipschitz function

Definition 147 Let I be any interval and $f: I \longrightarrow \mathbb{R}$.

f is called Lipschitzian if

$$\exists k \ge 0, \forall x, x' \in I, |f(x) - f(x')| \le k |x - x'|.$$

If $0 \le k < 1$ and $f: I \longrightarrow I$, we say that f is contractive (or a contraction).

Remark 148 Any Lipschitz function $f: I \longrightarrow I$ is uniformly continuous on I.

Indeed, let $\varepsilon > 0$, $\forall x, x' \in I, |f(x) - f(x')| \le k |x - x'| \le (k+1) |x - x'| < \varepsilon \Longrightarrow$ $|x - x'| < \frac{\varepsilon}{k+1} = \alpha$, therefore, it is enough to take $\alpha = \frac{\varepsilon}{k+1}$,

So f is uniformly continuous on I.

Theorem 149 Let $f : [a, b] \longrightarrow [a, b]$ be a contractive function, then f admits a unique fixed point.

3.4.8 Properties of monotonic functions on an interval

Theorem 150 Let I be any interval and $f: I \longrightarrow \mathbb{R}$ a monotonic function on I, then

f is continuous on $I \iff f(I)$ is an interval.

Theorem 151 Let $X \subset \mathbb{R}$ and f a strictly monotonic function on X, then the function $f: X \longrightarrow f(X)$ is bijective and the inverse function $f^{-1}: f(X) \longrightarrow X$ is strictly monotonic on f(X).

Theorem 152 (Inverse Function Theorem)

Let I be any interval and $f: I \longrightarrow f(I)$ a continuous and strictly increasing function (or strictly decreasing, respectively). Then the inverse function $f^{-1}: f(I) \longrightarrow I$ is continuous and strictly increasing (or strictly decreasing, respectively).

3.5 Exercises

Exercise 153 Let the function defined by : $\begin{array}{c} x \in [-\infty, 2] \end{array}$

$$f(x) = \begin{cases} 0 & , x \in [-\infty, 2], \\ a - \frac{b}{x} & , x \in [2, 4], \\ 1 & , x \in [4, +\infty[.$$

Determine a and b so that f is continuous on \mathbb{R} .

Solution :

f is continuous on $]-\infty, 2[$ because it is a constant function.

f is continuous on]2,4[because it is the sum and the product of continuous functions on]2,4[.

f is continuous on $]4, +\infty[$ because it is a constant function.

The continuity at $x_0 = 2$: f(2) = 0,

$$\lim_{x \le 2} f(x) = \lim_{x \ge 2} f(x) = f(2) \iff a - \frac{b}{2} = 0.$$

The continuity at $x_0 = 4$: $f(4) = a - \frac{b}{4}$,

$$\lim_{x \le 4} f(x) = \lim_{x \ge 4} f(x) = f(4) \iff a - \frac{b}{4} = 1.$$

We solve the following system :

$$\begin{cases} a - \frac{b}{2} = 0, \\ a - \frac{b}{4} = 1. \end{cases} \implies \begin{cases} a = 2, \\ b = 4. \end{cases}$$

Exercise 154 Let $f : [a, b] \longrightarrow \mathbb{R}$ be a continuous function such that

$$f(a).f(b) < 0.$$

Prove that
$$\forall x, y \in [a, b], \exists z \in [a, b] / f(z) = \frac{f(x) + f(y)}{3}.$$

Solution :

 $f:[a,b] \longrightarrow \mathbb{R}$ is a continuous function such that f(a).f(b) < 0,

therefore, by the intermediate value theorem, $\exists c \in]a, b[/ f(c) = 0.$

Furthermore, f is continuous on a closed and bounded interval, so it is bounded and,

moreover, it attains its bounds,

i.e.
$$\exists x_1, x_2 \in [a, b] / f(x_1) = \inf_{x \in [a, b]} f(x) = m \text{ and } f(x_2) = \sup_{x \in [a, b]} f(x) = M.$$

 $x \in [a, b] \Longrightarrow m \le f(x) \le M,$
 $y \in [a, b] \Longrightarrow m \le f(y) \le M,$
 $c \in]a, b[\Longrightarrow m \le f(c) = 0 \le M.$

By adding the three inequalities, we obtain

$$3m \le f(x) + f(y) \le 3M \Longrightarrow m \le \frac{f(x) + f(y)}{3} \le M,$$

therefore, by the generalized intermediate value theorem, $\exists \, z \in [a,b] \ / \ f(z) = \frac{f(x) + f(y)}{3}.$

Exercise 155 1) Using the intermediate value theorem, show that the equation : $xe^{\sin x} = \cos x$ admit a solution in $]0, \frac{\pi}{2}[$.

2) Prove that this solution is unique.

1) $xe^{\sin x} = \cos x \iff xe^{\sin x} - \cos x = 0.$ We set $f(x) = xe^{\sin x} - \cos x$,
$$\begin{split} f \text{ is continuous on } \left[0,\frac{\pi}{2}\right].\\ f(0) = -1 < 0 \text{ and } f(\frac{\pi}{2}) = \frac{\pi}{2}e > 0, \end{split}$$

therefore, by the intermediate value theorem, $\exists c \in]0, \frac{\pi}{2}[/f(c) = 0.$

2) Let's show that this solution is unique :

It is enough to show that the function is strictly monotone.

$$f'(x) = e^{\sin x} + x \cos x \cdot e^{\sin x} + \sin x > 0$$
 on $\left[0, \frac{\pi}{2}\right]$

then f is strictly increasing, hence the point c is unique.

Exercise 156 Let the function be defined by $f(x) = \frac{1 - \cos x}{x^2}$.

- 1) Determine the domain of definition D_f of the function f.
- 2) Study the continuity of f on D_f .
- 3) Study the extension by continuity of f on \mathbb{R} .

Solution :

Let the function definie by $f(x) = \frac{1 - \cos x}{x^2}$.

1) $D_f = \mathbb{R}^*$.

2) f is continuous on \mathbb{R}^* because it is the sum and the product of continuous functions on \mathbb{R}^* .

3) The extension by continuity of f on \mathbb{R} : $0 \notin D_f$,

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{(1 - \cos x)(1 + \cos x)}{x^2(1 + \cos x)} = \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2(1 + \cos x)}$$
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin^2 x}{x^2(1 + \cos x)} = \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 \frac{1}{(1 + \cos x)} = \frac{1}{2},$$
since $\lim_{x \to 0} \frac{\sin x}{x} = 1.$

Therefore f admits an extension by continuity at 0, and its extension is

$$\widetilde{f}(x) = \begin{cases}
\frac{1 - \cos x}{x^2}, & x \neq 0, \\
\frac{1}{2}, & x = 0.
\end{cases}$$

54CHAPTER 3. FUNCTIONS OF ONE REAL VARIABLE. LIMIT AND CONTINUITY

Chapter 4

Derivability of functions of one real variable

4.1 Generalities

4.1.1 Definition of the derivability

Definition 157 Let I be an interval, $x_0 \in I$ and $f: I \longrightarrow \mathbb{R}$ a real function.

We say that f is derivable at the point x_0 if $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ exists (finite).

This limit is called the derivative of f at the point x_0 , it is unique and is denoted by $f'(x_0)$ or $\frac{df}{dx}(x_0)$.

Remark 158 - The function f is derivable on I if it is derivable at every point $x_0 \in I$.

- The function $f': I \longrightarrow \mathbb{R}$ is called the derivative of the function f.

- We can also write: $\frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) + \varepsilon(x), \text{ with } \lim_{x \to x_0} \varepsilon(x) = 0,$ then, $f(x) - f(x_0) = (f'(x_0) + \varepsilon(x))(x - x_0),$ so we deduce that $f(x) = f(x_0) + f'(x_0)(x - x_0) + (x - x_0)\varepsilon(x).$ - If we set $h = x - x_0,$ when x tends to x_0 , then h tends to 0, we get, $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},$ and we also obtain $f(x_0+h) - f(x_0) = hf'(x_0) + h\varepsilon(h), \text{ with } \lim_{h \to 0} \varepsilon(h) = 0.$

- then f is derivable at the point x_0 if and only if there exists $\ell \in \mathbb{R}$ and a function ε such that

$$\forall x_0 + h \in I, \ f(x_0 + h) = f(x_0) + h\ell + h\varepsilon(h), \ with \ \lim_{h \to 0} \varepsilon(h) = 0,$$

i.e.
$$f(x) = f(x_0) + (x - x_0)\ell + (x - x_0)\varepsilon(x), \ with \ \lim_{x \to x_0} \varepsilon(x) = 0.$$

Example 159 1) $f(x) = c, \forall x \in \mathbb{R},$

$$\forall x_0 \in \mathbb{R}, f'(x_0) = \lim_{x \longrightarrow x_0} \frac{f(x) - f(x_0)}{x - x_0} = 0,$$
then $\forall x \in \mathbb{R}, f'(x) = 0.$
2) $f(x) = x, \forall x \in \mathbb{R},$
 $\forall x_0 \in \mathbb{R}, f'(x_0) = \lim_{x \longrightarrow x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \longrightarrow x_0} \frac{x - x_0}{x - x_0} = 1,$
so $\forall x \in \mathbb{R}, f'(x) = 1.$
3) $f(x) = x^2, \forall x \in \mathbb{R},$
 $f'(x_0) = \lim_{x \longrightarrow x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \longrightarrow x_0} \frac{x^2 - x_0^2}{x - x_0} = \lim_{x \longrightarrow x_0} \frac{(x - x_0)(x + x_0)}{x - x_0} = x_0,$
hence $\forall x \in \mathbb{R}, f'(x) = 2x.$

2

4)
$$f(x) = \sin x, \forall x \in \mathbb{R},$$

 $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{\sin x - \sin x_0}{x - x_0} = \lim_{x \to x_0} \frac{2\sin(\frac{x - x_0}{2})\cos(\frac{x + x_0}{2})}{x - x_0},$
 $= \lim_{x \to x_0} \frac{\sin(\frac{x - x_0}{2})}{\frac{x - x_0}{2}}\cos(\frac{x + x_0}{2}) = \cos x_0,$
therefore $\forall x \in \mathbb{R}, f'(x) = \cos x.$

4.1.2Geometric interpretation

Let f be a derivable function at the point x_0 .

The line with equation : (T) : $y = f(x_0) + f'(x_0)(x - x_0)$, is called the tangent to the graph of f at the point $M_0(x_0, f(x_0))$.

This line intersects the graph at a single point $M_0(x_0, f(x_0))$. $\tan \theta = \frac{f(x) - f(x_0)}{x - x_0}$.

D is the line that passes through the points $M_0(x_0, f(x_0))$ and M(x, f(x)).

Then $\tan \theta$ is the slope of the line D (or the slope coefficient of D).

When x tends to x_0 , we notice that the line D tends to the line (T) and therefore, $\tan \theta$ tends to the slope of (T) which is the derivative of f at the point x_0 .

Then we have $f'(x_0) = \tan \alpha$,

where α denotes the angle formed by the axis (OX) and the tangent to the curve of f at the point M_0 .

Conclusion

The derivative of f at x_0 is the slope of the tangent to the curve of f at the point $M_0(x_0, f(x_0))$.

Remark 160 If $f'(x_0) = 0$, then $\tan \alpha = 0 \Longrightarrow \alpha = 0$,

so (T) the tangent to the curve of f is horizontal at the point $M_0(x_0, f(x_0))$.

4.1.3 Right and left derivability of the function at x_0

Let $f: I \longrightarrow \mathbb{R}$ be a function and $x_0 \in I$.

f is derivable from the right at x_0 if $f'_d(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ exists (finite).

f is derivable from the left at x_0 if $f'_g(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ exists (finite).

Conclusion

f is derivable at $x_0 \iff f$ is derivable from the right and from the left at x_0 and $f_d'(x_0) = f_g'(x_0)$

Example 161 Let the function $f(x) = |x|, \forall x \in \mathbb{R}$.

We study the derivability of f at the point $x_0 = 0$:

$$f'_{d}(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{|x|}{x} = \lim_{x \to 0} \frac{x}{x} = 1,$$

$$f'_{g}(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{|x|}{x} = \lim_{x \to 0} \frac{-x}{x} = -1$$

since $f'_d(0) \neq f'_g(0)$, then f is not derivable at $x_0 = 0$.

Example 162 Let the function $f(x) = \sqrt{x}, \forall x \ge 0$. We study the derivability of f at the point $x_0 = 0$: $f'_d(0) = \lim_{x \ge 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \ge 0} \frac{\sqrt{x}}{x} = \lim_{x \ge 0} \frac{1}{\sqrt{x}} = +\infty,$

then f is not derivable at the point $x_0 = 0$.

4.2 Properties of derivable functions

4.2.1 Derivability and continuity

Theorem 163 Let $f : I \longrightarrow \mathbb{R}$ be a function and $x_0 \in I$. If f is derivable at x_0 , then f is continuous at x_0 . **Remark 164** 1) The contrapositive of this implication :

- If f is not continuous at $x_0 \Longrightarrow f$ is not derivable at x_0 .
- 2) The converse of this theorem is not true.

Example 165 The function f(x) = |x| is continuous at 0, but it is not derivable at 0.

4.2.2 Operations on derivable fonctions

Theorem 166 Let $f, g: I \longrightarrow \mathbb{R}$ be two derivable functions at $x_0 \in I$, then

- 1) (f+g) is derivable at x_0 and $(f+g)'(x_0) = f'(x_0) + g'(x_0)$.
- 2) $\forall \lambda \in \mathbb{R}, \lambda f \text{ is derivable at } x_0 \text{ and } (\lambda f)'(x_0) = \lambda f'(x_0).$
- 3) (f.g) is derivable at x_0 and $(f.g)'(x_0) = (f'.g)(x_0) + (f.g')(x_0)$.

4) If
$$g(x_0) \neq 0$$
, $\frac{f}{g}$ is derivable at x_0 and $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$.

4.2.3 Derivative of a composed function

Theorem 167 Let f a function defined on the interval I, g a function defined on the interval J such that $f(I) \subset J$ and $x_0 \in I$. If f is derivable at x_0 and gderivable at $f(x_0)$, then $(g \circ f)$ is derivable at x_0 and we have

$$(g \circ f)'(x_0) = f'(x_0).g'(f(x_0))$$

Example 168 1) $f(x) = \sin(x^2) \Longrightarrow f'(x) = 2x \cos(x^2), \ \forall x \in \mathbb{R}.$ 2) $f(x) = \ln \sqrt{x} \Longrightarrow f'(x) = \frac{1}{2\sqrt{x}} \frac{1}{\sqrt{x}} = \frac{1}{2x}, \ \forall x > 0.$

Remark 169 - The derivative of an even function is an odd function.

Indeed, let f be an even function $\implies f(-x) = f(x) \implies -f'(-x) = f'(x) \implies f' \text{ is odd.}$

- The derivative of an odd function is an even function.

Indeed, let f be an odd function $\implies f(-x) = -f(x) \implies -f'(-x) = -f'(x) \implies f'$ is even.

Example 170 The function $f(x) = \sin x$ is odd $\Longrightarrow f'(x) = \cos x$ is even.

4.2.4 Derivative of the reciprocal function

Theorem 171 Let f be a bijective and continuous function from an interval I to an interval J and derivable at $x_0 \in I$ such that $f'(x_0) \neq 0$.

Then the reciprocal function $f^{-1}: J \longrightarrow I$ is derivable at $y_0 = f(x_0)$ and we have

$$(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}$$

Example 172 The function $\tan x : \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[\longrightarrow \mathbb{R}$ is a bijective function,

Thus, it has a reciprocal function : $\arctan x : \mathbb{R} \longrightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$. $\forall x \in \mathbb{R}, (\arctan x)' = \frac{1}{(\tan y)'} = \frac{1}{1 + \tan^2 y} = \frac{1}{1 + x^2}, \quad with \quad x = \tan y$

4.2.5 Derivatives of order higher than 1

- If f is derivable, its derivative f' is called the first derivative of f.

- If f' is derivable, its derivative f'' is called the second derivative (or of order 2) of f.

- We define by recurrence the successive derivatives of f. Thus $f^{(n)}$ is the *n*th derivative or the *n*th-order derivative of f, it is the derivative of the function $f^{(n-1)}$, i.e. $f^{(n)}(x) = (f^{(n-1)})'(x)$.

Convention : $f^{(0)} = f$.

Example 173 We show by recurrence that :

$$\forall n \in \mathbb{N}, (\sin x)^{(n)} = \sin(x + n\frac{\pi}{2})$$

Indeed,

for n = 0: $(\sin x)^{(0)} = \sin x = \sin(x + 0\frac{\pi}{2}),$

for n = 1: $(\sin x)^{(1)} = \cos x = \sin(x + \frac{\pi}{2})$.

We assume that the property is true up to order n and we show that it is true for order (n + 1).

We assume that $(\sin x)^{(n)} = \sin(x + n\frac{\pi}{2})$, and we show that $(\sin x)^{(n+1)} = \sin(x + (n+1)\frac{\pi}{2})$?

$$(\sin x)^{(n+1)} = \left((\sin x)^{(n)}\right)' = (\sin(x+n\frac{\pi}{2}))' = \cos(x+n\frac{\pi}{2})$$
$$= \sin(x+n\frac{\pi}{2}+\frac{\pi}{2}) = \sin(x+(n+1)\frac{\pi}{2}).$$

Then, $\forall n \in \mathbb{N}, (\sin x)^{(n)} = \sin(x + n\frac{\pi}{2}).$

We show in the same way that

$$\forall n \in \mathbb{N}, (\cos x)^{(n)} = \cos(x + n\frac{\pi}{2})$$

4.2.6 Functions of class C^n

Definition 174 Let $f : I \longrightarrow \mathbb{R}$ be a function and $n \in \mathbb{N}^*$. We say that f is of class C^n (or n times continuously derivable) if it is n times derivable and if $f^{(n)}$ is continuous on I.

Remark 175 $C^{n}(I)$: it is the set of functions of class C^{n} on I.

 $C^{\infty}(I)$: It is the set of functions that are infinitely derivable on I. $C^{0}(I) = C(I)$: it is the set of continuous functions on I.

Example 176 1) $f(x) = x^2$,

 $f'(x) = 2x, \ f''(x) = 2, \ f^{(3)}(x) = 0, \dots, \ then \ f \in C^{\infty} \ (\mathbb{R}).$ 2) $f(x) = \sin x,$ $f^{(n)}(x) = \sin(x + n\frac{\pi}{2}) \ is \ continuous, \ then \ f \in C^{\infty} \ (\mathbb{R}).$

4.2.7 Leibniz Formula

Theorem 177 Let $f, g: I \longrightarrow \mathbb{R}$ and $x_0 \in I$ such that $f^{(n)}(x_0)$ and $g^{(n)}(x_0)$ exist $(n \in \mathbb{N}^*)$, then the function f.g admits a nth derivative at point x_0 , and we have

$$(f.g)^{(n)}(x_0) = \sum_{k=0}^{n} C_n^k f^{(k)}(x_0) g^{(n-k)}(x_0), \quad where \ C_n^k = \frac{n!}{k!(n-k)!}.$$

Example 178 Calculate the nth derivative of the function $f(x) = x^2 \sin x$.

$$\begin{aligned} f^{(n)}(x) &= (x^2 \sin x)^{(n)} = \sum_{k=0}^n C_n^k (x^2)^{(k)} . (\sin x)^{(n-k)} = C_n^0 (x^2) . (\sin x)^{(n)} \\ &+ C_n^1 (x^2)' . (\sin x)^{(n-1)} + C_n^2 (x^2)'' . (\sin x)^{(n-2)} + 0 + 0 ... \\ &= x^2 \sin(x + n\frac{\pi}{2}) + n2x \sin(x + (n-1)\frac{\pi}{2}) + n(n-1) \sin(x + (n-2)\frac{\pi}{2}). \end{aligned}$$

4.3 Main theorems

4.3.1 Maximum and minimum

Definition 179 (Local maximum)

Let $f: I \longrightarrow \mathbb{R}$ and $x_0 \in I$.

We say that f admits a local maximum at x_0 if

$$\exists \alpha > 0, \forall x \in I, |x - x_0| < \alpha \Longrightarrow f(x) \le f(x_0).$$

Definition 180 *(Local Minimum)* Let $f: I \longrightarrow \mathbb{R}$ and $x_0 \in I$.

We say that f admits a local minimum at x_0 if

$$\exists \alpha > 0, \forall x \in I, |x - x_0| < \alpha \Longrightarrow f(x) \ge f(x_0).$$

In both cases, we say that f admits a local extremum at the point x_0 .

Theorem 181 Let $f: I \longrightarrow \mathbb{R}$ and $x_0 \in I$.

If f admits an extremum (maximum or minimum) at the point x_0 and if $f'(x_0)$ exists, then $f'(x_0) = 0$.

Remark 182 A function can admit an extremum at x_0 , without being derivable at x_0 .

Example 183 f(x) = |x| admits a minimum at $x_0 = 0$, whereas it is not derivable at $x_0 = 0$.

Remark 184 The converse of the theorem is false.

Example 185 Let the function $f(x) = x^3$, $\forall x \in \mathbb{R}$.

We have f'(0) = 0, but f doesn't admit an extremum at 0.

4.3.2 Rolle's Theorem

Theorem 186 Let $f : [a, b] \longrightarrow \mathbb{R}$ be the function such that

- 1) f is continuous on [a, b],
- 2) f is derivable on]a, b[,
- 3) f(a) = f(b),

then, there exists $c \in]a, b[/ f'(c) = 0.$

Geometric interpretation of Rolle's Theorem :

 $\exists c \in]a, b[/ f'(c) = 0$, so there exists at least one tangent to the horizontal curve of f in the interval [a, b].

Example 187 The function $f(x) = x^2$, $x \in [-1, 1]$, verifies all the conditions of Rolle's Theorem, so there exists $c \in]-1, 1[/ f'(c) = 0.$

Remark 188 All the assumptions of Rolle's Theorem are essential for the application of Rolle's Theorem.

Example 189 The function f(x) = |x| verifies all the conditions of Rolle's theorem except the derivability in 0. We notice that there is no point $c \in]-1, 1[$ such that f'(c) = 0.

Remark 190 The converse of Rolle's Theorem is not true.

Example 191 The function $f(x) = x^3$ verifies f'(0) = 0, while it does not satisfy all the hypotheses of Rolle's Theorem on [-1, 1] $(f(1) \neq f(-1))$.

4.3.3 The Mean Value Theorem (M.V.T)

Theorem 192 Let $f : [a, b] \longrightarrow \mathbb{R}$ be the function such that

- 1) f is continuous on [a, b],
- 2) f is derivable on]a, b[,
- then there exists $c \in [a, b[/ f(b) f(a)] = (b a)f'(c)$.

Geometric interpretation of the Mean Value Theorem (M.V.T) : We have $\frac{f(b) - f(a)}{b - a} = f'(c)$,

then f'(c) is the slope of the line (AB) passing through the points A(a, f(a))and B(b, f(b)),

from where there exists a point C(c, f(c)) such that (T) the tangent to the curve of f at this point is parallel to the line (AB), because (T) and (AB) have the same slope.

Corollary 193 Let I be any interval and $f: I \longrightarrow \mathbb{R}$ be a derivable function on I and let $x_1, x_2 \in I$ with $x_1 < x_2$. Then, there exists $c \in]x_1, x_2[$ such that

 $f(x_2) - f(x_1) = (x_2 - x_1)f'(c).$

Another formulation of the Mean Value Theorem (M.V.T). We set h = b - a > 0,

$$c \in]a, b[\Longrightarrow c = a + (c - a) = a + \frac{(c - a)}{h}h = a + \theta h$$
, with $\theta \in]0, 1[$

With this notation, the Mean Value Theorem formula can be written as : $\exists \theta \in]0,1[\ /\ f(a+h) - f(a) = hf'(a+\theta h).$

Example 194 *Prove that* $\forall x \in \left[0, \frac{\pi}{2}\right[, \tan x \ge x.$

- If
$$x = 0$$
, $\tan 0 = 0 \ge 0$,
- If $x \in \left[0, \frac{\pi}{2}\right]$, we set $f(t) = \tan t$, and $[a, b] = [0, x]$, we have

f is continuous on [0, x] and derivable on]0, x[, then according to the Mean Value Theorem (M.V.T), there exists $c \in]0, x[/ f(x) - f(0) = (x - 0)f'(c),$

then,
$$\tan x - \tan 0 = x(1 + \tan^2 c) \ge x \Longrightarrow \tan x \ge x$$
.
Hence $\forall x \in \left[0, \frac{\pi}{2}\right[, \tan x \ge x.$

4.3.4 Application of the Mean Value Theorem (M.V.T) to the variations of functions

Proposition 195 Let $f: I \longrightarrow \mathbb{R}$ be a continuous and derivable function on I (any interval). Then we have

- 1) $\forall x \in I, f'(x) = 0 \iff f$ is a constant function.
- 2) $\forall x \in I, f'(x) \ge 0 \iff f$ is an increasing function.
- 3) $\forall x \in I, f'(x) \leq 0 \iff f$ is a decreasing function.

4.3.5 Generalized Mean Value Theorem (G.M.V.T)

Theorem 196 Let $f, g : [a, b] \longrightarrow \mathbb{R}$ be two functions continuous on [a, b] and derivable on [a, b]. If $\forall x \in [a, b], g'(x) \neq 0$, then we have

$$\exists c \in]a, b[/ \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'c)}{g'(c)}$$

Remark 197 From this theorem, we deduce L'Hôpital's rule, which allows us to compute limits of the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

4.3.6 L'Hôpital's rule

Theorem 198 Let I be any interval of \mathbb{R} , $x_0 \in I$ and two functions $f, g: I \longrightarrow \mathbb{R}$ continuous on I and derivable on $I \smallsetminus \{x_0\}$.

If
$$f(x_0) = g(x_0) = 0$$
 and $\forall x \in I \setminus \{x_0\}, g'(x) \neq 0$, then
if $\lim_{x \longrightarrow x_0} \frac{f'(x)}{g'(x)} = \ell$ (finite or infinite), then $\lim_{x \longrightarrow x_0} \frac{f(x)}{g(x)} = \ell$.

Remark 199 L'Hôpital's rule can be applied in the following cases:

1) x_0 is an adherent point of I.

2) The hypothesis $f(x_0) = g(x_0) = 0$ is replaced by $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$.

3) In the case $x_0 = \infty$, $\lim_{x \longrightarrow x_0} f(x) = \lim_{x \longrightarrow x_0} g(x) = \infty$.

Example 200 Calculate $\lim_{x \to 0} \frac{1 - \cos x}{x^2}$. Since the assumptions are satisfied and $\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{(1 - \cos x)'}{(x^2)'} = \lim_{x \to 0} \frac{\sin x}{2x} = \frac{1}{2}$, then $\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$.
4.4. TAYLOR'S FORMULA

Remark 201 The converse of L'Hôpital's rule is not true, i.e. if $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ exist, this does not imply that $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ exists.

Example 202 Let the functions defined by

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases} et g(x) = \sin x$$

Example 203 $\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x} = \lim_{x \to 0} \left(\frac{x}{\sin x}\right) \left(x \sin \frac{1}{x}\right) = 1.0 = 0,$

while
$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{1}{\cos x} (2x \sin \frac{1}{x} - \cos \frac{1}{x}) : doesn't exist,$$

because $\lim_{x \to 0} \cos \frac{1}{x} doesn't exist.$

4.4 Taylor's formula

A function f continuous son[a, b] and derivable at $x_0 \in]a, b[$ can be written in the vicinity of x_0 in the following form :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + (x - x_0)\varepsilon(x) / \lim_{x \to x_0} \varepsilon(x) = 0.$$

This means that f can be approximated by the polynomial of degree 1 :

$$P(x) = f(x_0) + f'(x_0)(x - x_0),$$

$$R(x) = (x - x_0)\varepsilon(x) : \text{ it is the error made by this approximation.}$$

Taylor's formula generalizes this result by showing that functions that are n-times derivable can be approximated in the vicinity of x_0 by polynomials of degree n, i.e.

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

where
$$P_n(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

is the polynomial of degree that approximates f with an accuracy equal to $R_n(x)$.

The error $R_n(x)$ is called the remainder of order n and has several forms depending on the derivability conditions imposed on f, which gives us several forms of Taylor's formula.

4.4.1 Taylor's formula with Lagrange remainder

Theorem 204 Let $f : [a,b] \longrightarrow \mathbb{R}$ be a function such that $f \in C^n([a,b])$ and $f^{(n)}$ derivable on [a,b]; Then there exists $c \in [a,b]$ such that

$$f(b) = f(a) + \frac{(b-a)}{1!}f'(a) + \frac{(b-a)^2}{2!}f''(a) + \dots + \frac{(b-a)^n}{n!}f^{(n)}(a) + \frac{(b-a)^{n+1}}{(n+1)!}f^{(n+1)}(c).$$

It is the Taylor formula with Lagrange's remainder : $R_n = \frac{(b-a)^{n+1}}{(n+1)!} f^{(n+1)}(c).$

4.4.2 Taylor-Maclaurin formula

If h = b - a, then $c = a + \theta h$ with $\theta \in [0, 1[$ and if we substitute into the Taylor-Lagrange formula, we obtain the Maclaurin Taylor formula.

Theorem 205 Let I an interval of \mathbb{R} , $a \in I$, $f \in C^n(I)$ and f admits a derivative of order (n + 1) on I. Then for any $a + h \in I$, there exists $\theta \in [0, 1[$ such that

$$f(a+h) = f(a) + \frac{h}{1!}f'(a) + \frac{h^2}{2!}f''(a) + \dots + \frac{h^n}{n!}f^{(n)}(a) + \frac{h^{n+1}}{(n+1)!}f^{(n+1)}(a+\theta h).$$

Remark 206 If we set a = 0 and x = a + h By substituting into the Taylor-Maclaurin formula, we obtain the Maclaurin formula of order n with Lagrange's remainder.: $\forall x \in I, \exists \theta \in]0, 1[$ such that

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + \frac{x^{n+1}}{(n+1)!}f^{(n+1)}(\theta x).$$

4.4.3 Taylor's formula with Young's remainder

Theorem 207 Let $f : [a,b] \longrightarrow \mathbb{R}, x_0 \in [a,b]$ and assume that $f^{(n)}(x_0)$ exists (finite). Then for any $x \in [a,b]$, we have

$$f(x) = f(x_0) + \frac{(x - x_0)}{1!} f'(x_0) + \frac{(x - x_0)^2}{2!} f''(x_0) + \dots + \frac{(x - x_0)^n}{n!} f^{(n)}(x_0) + \dots + o((x - x_0)^n),$$

such that
$$\lim_{x \to x_0} \frac{o((x-x_0)^n)}{(x-x_0)^n} = 0.$$

The remainder $o((x-x_0)^n) = (x-x_0)^n \varepsilon(x) / \lim_{x \to x_0} \varepsilon(x) = 0.$

4.4.4 Maclaurin-Young formula

By taking $x_0 = 0$ and with the same assumptions as those of the Taylor-Young formula, we obtain the Maclaurin formula of order n with the following Young's remainder term :

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + x^n\varepsilon(x) / \lim_{x \to 0}\varepsilon(x) = 0.$$

 $\begin{aligned} & \textbf{Example 208 1} \mid \forall x \in \mathbb{R}, e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n}) \ / \ \lim_{x \to 0} \frac{o(x^{n})}{x^{n}} = 0. \\ & 2) \ \forall x \in \mathbb{R}, \sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1}) \ / \ \lim_{x \to 0} \frac{o(x^{2n+1})}{x^{2n+1}} = 0. \\ & 3) \ \forall x \in \mathbb{R}, \cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + o(x^{2n}) \ / \ \lim_{x \to 0} \frac{o(x^{2n})}{x^{2n}} = 0. \\ & 4) \ f(x) = (1+x)^{\alpha}, \ x \in]-1, +\infty[, \ \forall \alpha \in \mathbb{R}, \\ f \ is \ indefinitely \ derivable : \\ & \forall k \in \mathbb{N}^{*}, \ f^{(k)}(x) = \alpha(\alpha-1).\dots.(\alpha-k+1)(1+x)^{\alpha-k}, \\ & then \ f^{(k)}(0) = \alpha(\alpha-1).\dots.(\alpha-k+1) \\ & (1+x)^{\alpha} = 1 + \frac{\alpha x}{1!} + \frac{\alpha(\alpha-1)}{2!}x^{2} + \dots + \frac{\alpha(\alpha-1)\dots.(\alpha-n+1)}{n!}x^{n} + o(x^{n}) \\ & / \ \lim_{x \to 0} \frac{o(x^{2n+1})}{x^{2n+1}} = 0. \\ & If \ \alpha = -1: \\ & \frac{1}{1+x} = (1+x)^{-1} = 1 - x + x^{2} + \dots + (-1)^{n}x^{n} + o(x^{n}), \ / \ \lim_{x \to 0} \frac{o(x^{n})}{x^{n}} = 0, \\ & we \ deduce \\ & \frac{1}{1-x} = \frac{1}{1+(-x)} = 1 + x + x^{2} + \dots + x^{n} + o(x^{n}), \ / \ \lim_{x \to 0} \frac{o(x^{n})}{x^{n}} = 0. \end{aligned}$

4.5 Exercises

Exercise 209 We define the function $f(x) = \begin{cases} x^2 \sin \frac{1}{x} & , & x \neq 0, \\ 0 & , & x = 0. \end{cases}$

- 1) Give the domain of definition D_f of the function f.
- 2) Study the continuity and derivability of f on D_f and calculate f'.
- 3) f is it of class $C^1(\mathbb{R})$?
- 4) Prove that : $\forall x \in \mathbb{R}, |\sin x| \le |x|$.

Solution :

We define the function
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & , \quad x \neq 0, \\ 0 & , \quad x = 0. \end{cases}$$

- 1) The domain of definition $Df = \mathbb{R}$.
- 2) Study the continuity and derivability of f on D_f :

f is continuous and derivable on \mathbb{R}^* because it is the product and the composition of continuous and derivable functions on \mathbb{R}^* .

Continuity at 0 : f(0) = 0,

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x^2 \sin \frac{1}{x} = 0 = f(0),$$

(since $\lim_{x \to 0} x^2 = 0$ and $\sin \frac{1}{x}$ is bounded).

Then f is continuous at 0, hence f is continuous on \mathbb{R} . Derivability at 0 :

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{x} = \lim_{n \to 0} x \sin \frac{1}{x} = 0,$$

(since $\lim_{x \to 0} x = 0$ and $\sin \frac{1}{x}$ is bounded).
Then f is derivable at 0 and $f'(0) = 0$.
Thus f is continuous and derivable on \mathbb{R} .

$$f'(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$

3) f is of class $C^1(\mathbb{R})$ if f' is continuous on \mathbb{R} .

f' is continuous on \mathbb{R}^* because it is the sum, the product and the composition of continuous functions on \mathbb{R}^* .

Continuity of f' at 0 : f'(0) = 0,

 $\lim_{x \to 0} f'(x) = \lim_{x \to 0} \left(2x \sin \frac{1}{x} - \cos \frac{1}{x} \right) : \text{ does not exist (since } \lim_{x \to 0} \cos \frac{1}{x} \text{ does not exist).}$

Then f' is not continuous at 0, therefore $f \notin C^1(\mathbb{R})$.

- 4) We prove that : $\forall x \in \mathbb{R}, |\sin x| \le |x|$.
- Let $x \in \mathbb{R}$, then we have x = 0 or x > 0 or x < 0.
- If x = 0: $|\sin 0| = 0 \le |0| = 0$.
- If x > 0: we set $g(t) = \sin t$ on [0, x],

g is continuous on [0,x] and derivable on]0,x[, then, according to the Mean Value Theorem, we have

- $\exists c \in]0, x[$ such that g(x) g(0) = (x 0)g'(c), then $\sin x = x \cos c$,
- so $|\sin x| = |x| |\cos c| \le |x|$ (since $|\cos c| \le 1$), hence $|\sin x| \le |x|$.
- If x < 0: we set $g(t) = \sin t$ on [x, 0]

g is continuous on [x, 0] and derivable on]x, 0[, then, according to the Mean Value Theorem, we have

 $\exists c \in]x, 0[\text{ such that } g(x) - g(0) = (x - 0)g'(c), \text{ then } \sin x = x \cos c,$

so $|\sin x| = |x| |\cos c| \le |x|$ (since $|\cos c| \le 1$), hence $|\sin x| \le |x|$.

Therefore $\forall x \in \mathbb{R}, |\sin x| \le |x|$.

Exercise 210 Let the function $f(x) = \frac{x^2}{x+2}e^{\frac{-1}{x^2}}$.

- 1) Find the domain of definition D_f of the function f.
- 2) Study the continuity and derivability of the function f.
- 3) Study the extension by continuity of f.
- 4) Prove that $\forall x \in \mathbb{R}, e^x \ge x+1$.

Solution :

$$f(x) = \frac{x^2}{x+2}e^{\frac{-1}{x^2}}.$$

1) $D_f = \mathbb{R} \setminus \{-2, 0\}.$

2) Study the continuity and derivability of the function f :

f is continuous and derivable on D_f because it is the sum, the product, and the composition of continuous and derivable functions on D_f .

72CHAPTER 4. DERIVABILITY OF FUNCTIONS OF ONE REAL VARIABLE

3) The extension by continuity of f at $x_0 = -2 \notin D_f$,

$$\lim_{x \to -2} f(x) = \lim_{x \to -2} \frac{x^2}{x+2} e^{\frac{-1}{x^2}} = \pm \infty$$

then f does not admit an extension by continuity at $x_0 = -2$.

The extension by continuity of f at $x_0 = 0 \notin D_f$,

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x^2}{x+2} e^{\frac{-1}{x^2}} = 0,$$

then f admit an extension by continuity at 0 and its extension is :

$$\tilde{f}(x) = \begin{cases} \frac{x^2}{x+2}e^{\frac{-1}{x^2}}, & x \in \mathbb{R} \setminus \{0, -2\}, \\ 0, & x = 0. \end{cases}$$

4) We prove $\forall x \in \mathbb{R}, e^x \ge x+1$.

We study three cases :

 1^{st} **case** : if x = 0 :

we directly substitute into the inequality : $e^0 = 1 \ge 0 + 1$, so the inequality holds.

 2^{nd} **case** : if x > 0 :

We apply the Mean Value Theorem, we take $g(t) = e^t$ and [a, b] = [0, x],

g is continuous on [0,x] and derivable on]0,x[, then, according to the Mean Value Theorem

 $\exists c \in]0, x[\text{ such that } g(x) - g(0) = (x - 0)g'(c),$

then $e^x - e^0 = (x - 0)e^c$, hence $e^x - 1 = xe^c > x$ (since $c > 0 \Longrightarrow e^c > 1$),

thus $e^x > x + 1$.

 3^{rd} **case** : if x < 0 :

We apply the Mean Value Theorem, we take $g(t) = e^t$ and [a, b] = [x, 0],

g is continuous on [x,0] and derivable on]x,0[, then, according to the Mean Value Theorem

 $\exists c \in]x, 0[\text{ such } g(x) - g(0) = (x - 0)g'(c),$ then $e^x - e^0 = (x - 0)e^c,$ hence $e^x - 1 = xe^c > x$ (since $c < 0 \Longrightarrow e^c < 1$ and x < 0), therefore $e^x > x + 1$. **Conclusion** : $\forall x \in \mathbb{R}, e^x \ge x + 1$.

4.5. EXERCISES

Exercise 211 Let f be a function definie by

$$f(x) = \begin{cases} x^3(2-3\ln(x^2)) &, x \neq 0, \\ 0 &, x = 0. \end{cases}$$

- 1) Justify the application of Rolle's Theorem to the function f on $\left[0, e^{\frac{1}{3}}\right]$.
- 2) Specify the value $c \in \left]0, e^{\frac{1}{3}}\right[/ f'(c) = 0.$

Solution :

1) We justify the application of Rolle's Theorem to the function f on $\left[0, e^{\frac{1}{3}}\right]$.

We study the continuity of f on $D_f = \mathbb{R}$:

f is continuous on \mathbb{R}^* because it is the sum, the product, and the composition of continuous functions on $\mathbb{R}^*.$

Continuity of f at 0: f(0) = 0,

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x^3 (2 - 3\ln(x^2)) = \lim_{x \to 0} (2x^3 - 3x^3\ln(x^2)) = 0 = f(0),$$

then f is continuous at 0, so f is continuous on \mathbb{R} .

f is derivable on \mathbb{R}^* because it is the sum, the product, and the composition of derivable functions on $\mathbb{R}^*.$

Then f is continuous on $\left[0, e^{\frac{1}{3}}\right]$ and it is derivable on $\left]0, e^{\frac{1}{3}}\right[$, moreover $f(0) = f(e^{\frac{1}{3}}) = 0$,

Thus, according to Rolle's Theorem, $\exists c \in \left] 0, e^{\frac{1}{3}} \right[/ f'(c) = 0.$ 2) Let's specify the value $c \in \left] 0, e^{\frac{1}{3}} \right[/ f'(c) = 0.$ For $x \neq 0$, $f'(x) = 3x^2(2 - 3\ln(x^2)) + x^3\frac{(-6x)}{x^2} = -9x^2\ln(x^2),$ $f'(c) = 0 \iff -9c^2\ln(c^2) = 0,$ since $c \in \left] 0, e^{\frac{1}{3}} \right[$, so c = 1.

Exercise 212 Let the function $f(x) = \frac{4e^x}{e^x + 1}$.

- 1) Find the domain of definition D_f de la fonction f.
- 2) Study the continuity and derivability of the function f and calculate f'.
- 3) Prove that f admit a unique fixed point in]3, 4[.

Solution :

1)
$$D_f = \mathbb{R}$$
.

2) Study of the continuity and the derivability of the function f:

f is continuous and derivable on \mathbb{R} because it is the sum and the product of continuous and derivable functions on \mathbb{R} .

$$\forall x \in \mathbb{R}, \ f'(x) = \frac{4e^x}{(e^x + 1)^2}.$$

3) Let us show that f admit a unique fixed point in [3, 4]:

the fixed point of f is the solution of the equation f(x) = x.

We set g(x) = f(x) - x,

g is continuous on [3,4] because it is the sum of two continuous functions on $\mathbb R,$ particularly on $[3,4]\,,$

moreover, we have g(3) > 0 and g(4) < 0,

thus, according to the Intermediate Value Theorem, $\exists c \in [3, 4[/ g(c) = 0.$

Let us show that this point is unique: it is enough to show that the function g is strictly monotone.

$$g'(x) = \frac{4e^x}{(e^x + 1)^2} - 1 = \frac{-(e^x - 1)^2}{(e^x + 1)^2} < 0, \ \forall x \in \mathbb{R}^*,$$

then g is strictly monotone, hence the point c is unique.

We have f(c) - c = 0, d'où f(c) = c, so f admit a unique fixed point.

Chapter 5

Circular functions and hyperbolic functions

5.1 Reciprocal circular functions

5.1.1 Arcsine function

Let $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow [-1, 1] / f(x) = \sin x.$ $f'(x) = \cos x.$

f is continuous and strictly increasing on $\left[-\frac{\pi}{2},\frac{\pi}{2}\right].$

$$f\left(\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\right) = \left[-1,1\right]$$

Then, f is a bijection and therefore f has an inverse function f^{-1} .

 $f^{-1}: [-1,1] \longrightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] / f^{-1}(x) = \arcsin x.$

 f^{-1} is continuous and strictly increasing on [-1, 1].

$$\forall x \in [-1,1], f^{-1}(x) = y / y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \text{ and } x = \sin y.$$

The derivative of the inverse function f^{-1} :

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}, \forall x \in]1,1[.$$

Remark 213 The graph of the inverse function is obtained by symmetry with respect to the first bisector (y = x).

Graphs

Graph of $f(x) = \sin x$

Graph of $f^{-1}(x) = \arcsin x$

5.1.2 Arccosine function

Let $f: [0, \pi] \longrightarrow [-1, 1] / f(x) = \cos x$. $f'(x) = -\sin x$.

f is continuous and strictly decreasing on $[0, \pi]$.

 $f([0,\pi]) = [-1,1].$

Then, f is a bijection and therefore f has an inverse function f^{-1} .

 $f^{-1}: [-1,1] \longrightarrow [0,\pi] / f^{-1}(x) = \arccos x.$

 f^{-1} is continuous and strictly decreasing on [-1, 1].

 $\forall x \in [-1,1], f^{-1}(x) = y / y \in [0,\pi] \text{ et } x = \cos y.$

The derivative of the inverse function f^{-1} :

$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}, \forall x \in]1,1[.$$

Graphs

Graph of $f(x) = \cos x$

Graph of $f^{-1}(x) = \arccos x$

Property:

 $\forall x \in [-1, 1], \arcsin x + \arccos x = \frac{\pi}{2}$

[.

Indeed, we set $f(x) = \arcsin x + \arccos x$, $\forall x \in]-1, 1[, f'(x) = \frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-x^2}} = 0$, then, f(x) = c: constant. $c = f(0) = \arcsin 0 + \arccos 0 = 0 + \frac{\pi}{2} = \frac{\pi}{2}$, and we have $f(1) = f(-1) = \frac{\pi}{2}$. Therefore, $\forall x \in [-1, 1]$, $\arcsin x + \arccos x = \frac{\pi}{2}$.

5.1.3 Arctangent function

Let
$$f: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\longrightarrow \mathbb{R} / f(x) = \tan x = \frac{\sin x}{\cos x}.$$

 $f'(x) = \frac{1}{\cos^2 x} = 1 + \tan^2 x.$
 f is continuous and strictly increasing on $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right]$
 $f\left(\left] -\frac{\pi}{2}, \frac{\pi}{2} \right] = \mathbb{R}.$

5.1. RECIPROCAL CIRCULAR FUNCTIONS

Then, f is a bijection and therefore f has an inverse function f^{-1} .

$$f^{-1}: \mathbb{R} \longrightarrow \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, / f^{-1}(x) = \arctan x.$$

 f^{-1} is continuous and strictly increasing on \mathbb{R} .

$$\forall x \in \mathbb{R}, f^{-1}(x) = y / y \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{ et } x = \tan y.$$

The derivative of the inverse function f^{-1} :

$$(\arctan x)' = \frac{1}{1+x^2}.$$

Graphs:

Graph of $f(x) = \tan x$

Remark 214 We introduce the function $\operatorname{arccot} : \mathbb{R} \longrightarrow]0, \pi[$ which is the inverse function of the restriction of the function $\operatorname{cot} x = \frac{\cos x}{\sin x}).$

We have :
$$(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$$
.
 $\forall x \in \mathbb{R}, \operatorname{arctan} x + \operatorname{arccot} x = \frac{\pi}{2}$.

5.2 Hyperbolic functions and their inverses

5.2.1 Hyperbolic sine function and its inverse, Hyperbolic sine function argument"

Let
$$f : \mathbb{R} \longrightarrow \mathbb{R} / f(x) = shx = \frac{e^x - e^{-x}}{2}.$$

 $\forall x \in \mathbb{R}, f'(x) = \frac{e^x + e^{-x}}{2} = chx > 0.$

Remark 215 f is odd, so it is enough to study f on \mathbb{R}^+ , the rest of the graph

can be deduced by symmetry with respect to the origin of the coordinate system.

Variations and graph of f(x) = shx

$$\lim_{x \to +\infty} \frac{shx}{x} = +\infty,$$

Then, there exists an asymptotic direction parallel to the axis (OY).

f is continuous and strictly increasing on \mathbb{R} .

$$f(\mathbb{R}) = \mathbb{R}.$$

Hence, f is a bijection and therefore f has an inverse function f^{-1} :

 $f^{-1}: \mathbb{R} \longrightarrow \mathbb{R} / f^{-1}(x) = \arg shx.$

 f^{-1} is continuous and strictly increasing on \mathbb{R} .

 $\forall x \in \mathbb{R}, y = \arg shx \iff y \in \mathbb{R} \text{ and } x = shy.$

The derivative of the inverse function f^{-1} :

$$\forall x \in \mathbb{R}, (\arg shx)' = \frac{1}{\sqrt{1+x^2}}.$$

5.2.2 Hyperbolic cosine function and its inverse, Hyperbolic cosine function argument

Let
$$f : \mathbb{R} \longrightarrow \mathbb{R} / f(x) = chx = \frac{e^x + e^{-x}}{2}$$
.
 $\forall x \in]0, +\infty[, f'(x) = \frac{e^x - e^{-x}}{2} = shx > 0.$

Remark 216 f is an even function, so it is enough to study f sur \mathbb{R}_+ , and the rest of the graph can be deduced by symmetry with respect to the axis (Oy).

Variations and graph of f(x) = chx

 $\lim_{x \to +\infty} \frac{chx}{x} = +\infty,$

then, there exists an asymptotic direction parallel to the (Oy) axis.

Since f is not injective on \mathbb{R} , we consider its restriction on $[0, +\infty)$.

 $f: [0, +\infty[\longrightarrow [1, +\infty[/ f(x) = chx.$

f is continuous and strictly increasing on $[0, +\infty[$.

$$f([0,+\infty[)=[1,+\infty[$$

Then, f is a bijection and consequently f admits an inverse function f^{-1} : $f^{-1}: [1, +\infty[\longrightarrow [0, +\infty[/ f^{-1}(x) = \arg chx.$

 f^{-1} is continuous and strictly increasing on $[1, +\infty[$.

 $\forall x \ge 1, y = \arg chx \iff y \ge 0 \text{ and } x = chy.$

The derivative of the inverse function f^{-1} :

$$\forall x > 1, (\arg chx)' = \frac{1}{\sqrt{x^2 - 1}}.$$

Properties :

- 1) $chx + shx = e^x$.
- 2) $chx shx = e^{-x}$.
- 3) $ch^2x sh^2x = 1$.
- 4) ch(x+y) = chx.chy + shx.shy.

- 5) $ch(2x) = ch^2x + sh^2x = 1 + 2sh^2x = 2ch^2x 1.$
- 6) sh(x+y) = shx.chy + shy.chx.
- 7) sh(2x) = 2shx.chx.

Remark 217 We can express the functions $\arg shx$ and $\arg chx$ using the logarithmic function :

 $\begin{array}{l} \mathbf{1}) \ x = shy \Longleftrightarrow y = \arg shx, \\ ch^2y - sh^2y = 1 \Longrightarrow ch^2y = 1 + sh^2y \ and \ chy > 0, \\ then, \ chy = \sqrt{1 + sh^2y} = \sqrt{1 + x^2}, \\ hence, \ shy + chy = x + \sqrt{1 + x^2} = e^y, \\ therefore, \ y = \ln(x + \sqrt{1 + x^2}), \\ finally, \ \arg shx = \ln(x + \sqrt{1 + x^2}). \\ \mathbf{2}) \ chy = x \ and \ shy = \sqrt{x^2 - 1} \ (since \ y \ge 0), \\ then, \ chy + shy = x + \sqrt{x^2 - 1} = e^y, \\ hence, \ y = \ln(x + \sqrt{x^2 - 1}), \\ therefore, \ \arg chx = \ln(x + \sqrt{x^2 - 1}), \ x \ge 1. \end{array}$

5.2.3 Hyperbolic tangent function and its inverse hyperbolic tangent function argument

Let
$$f : \mathbb{R} \longrightarrow \mathbb{R} / f(x) = thx = \frac{shx}{chx} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}.$$

$$\forall x \in \mathbb{R}, f'(x) = \frac{1}{ch^2x} = 1 - th^2x > 0.$$

Remark 218 f is odd, so it is enough to study f on \mathbb{R}_+ , we can deduce the rest of the graph by symmetry with respect to the origin of the coordinate system

 $f(\mathbb{R}) =]-1, 1[.$

Then, we consider the function $f : \mathbb{R} \longrightarrow]-1, 1[/ f(x) = thx.$

f is continuous and strictly increasing on \mathbb{R} .

Then, f is a bijection and consequently, f has an inverse function f^{-1} .

$$f^{-1}:]-1, 1[\longrightarrow \mathbb{R} / f^{-1}(x) = \arg thx.$$

 f^{-1} is continuous and strictly increasing on]-1, 1[.

 $\forall x \in \left]-1, 1\right[, \ y = \arg thx \iff y \in \mathbb{R} \text{ and } x = thy.$

The derivative of the inverse function f^{-1} :

$$\forall x \in]-1, 1[, (\arg thx)' = \frac{1}{1-x^2}$$

5.2.4 Hyperbolic cotangent function and its inverse hyperbolic cotangent function argument

Let
$$f : \mathbb{R}^* \longrightarrow \mathbb{R} / f(x) = \coth x = \frac{1}{thx} = \frac{chx}{shx} = \frac{e^x + e^{-x}}{e^x - e^{-x}} = \frac{e^{2x} + 1}{e^{2x} - 1}$$
.
 $\forall x \in \mathbb{R}^*, f'(x) = -\frac{1}{sh^2x} = 1 - \coth^2 x < 0.$

Remark 219 f is odd.

Variations and graph of $f(x) = \coth x$

The lines with equations x = 0, y = 1 and y = -1 are asymptotes.

 $f(\mathbb{R}^*) = \left] - \infty, -1\right[\cup \left] 1, +\infty\right[.$

Then, we consider the function $f: \mathbb{R}^* \longrightarrow]-\infty, -1[\cup]1, +\infty[//f(x) = \coth x.$

f is continuous and strictement decreasing on \mathbb{R}^* .

then, f is a bijection and therefore f admits an inverse function f^{-1} .

 $f^{-1}:]-\infty, -1[\cup]1, +\infty[\longrightarrow \mathbb{R}^* / f^{-1}(x) = \operatorname{arg} \operatorname{coth} x.$

 f^{-1} is continuous and strictly decreasing on $]-\infty, -1[\cup]1, +\infty[$.

 $\forall x \in]-\infty, -1[\cup]1, +\infty[, y = \operatorname{arg coth} x \iff y \in \mathbb{R}^* \text{ and } x = \operatorname{coth} y.$

The derivative of the inverse function f^{-1} :

$$\forall x \in]-\infty, -1[\cup]1, +\infty[, (\operatorname{arg coth} x)' = \frac{1}{1-x^2}$$

5.3 Exercices

Exercise 220 Let the function $f(x) = \arccos \frac{1-x}{2}$.

- 1) Find the domain of definition. D_f of the function f.
- 2) Study the continuity and derivability of the function f and calculate f'.

Solution :

 $f(x) = \arccos \frac{1-x}{2}.$

1) The domain of definition D_f of the function f:

the function $\arccos x$ is defined on [-1, 1], then we have

$$D_f = \left\{ x \in \mathbb{R} / -1 \le \frac{1-x}{2} \le 1 \right\},$$

$$-1 \le \frac{1-x}{2} \le 1 \iff -2 \le 1-x \le 2 \iff -1 \le x \le 3$$

hence, $D_f = [-1,3].$

2) Study of the continuity and derivability of the function f.

• f is continuous on [-1,3] because it is the sum, the product, and the composition of continuous functions on [-1,3].

• f is derivable on]-1,3[because it is the sum, the product, and the composition of derivable functions on]-1,3[.

$$\forall x \in]-1,3[, f'(x) = -\frac{1}{2}\left(\frac{-1}{\sqrt{1-(\frac{1-x}{2})^2}}\right) = \left(\frac{1}{\sqrt{-x^2+2x+3}}\right).$$

Exercise 221 Let the function $f(x) = x - \arctan \frac{x+1}{x}$.

- 1) Find the domain of definition D_f of the function f.
- 2) Study the continuity and derivability of the function f and calculate f'.
- 3) Study the extension by continuity of f.
- 4) Prove that : $\forall x \ge 0, \frac{x}{1+x^2} \le \arctan x \le x.$

Solution :

1)
$$f(x) = x - \arctan \frac{x+1}{x}$$
.

The function $\arctan x$ is defined on \mathbb{R} , then $D_f = \mathbb{R}^*$.

2) Study of the continuity and derivability of the function f:

f is continuous and derivable on \mathbb{R}^* because it is the sum, the product, and the composition of continuous and derivable functions on \mathbb{R}^* .

$$\begin{aligned} \forall x \in \mathbb{R}^*, \ f'(x) &= 1 - \left(\frac{x+1}{x}\right)' \frac{1}{1 + \left(\frac{x+1}{x}\right)^2} = 1 - \left(\frac{-1}{x^2}\right) \frac{1}{\frac{x^2 + (x+1)^2}{x^2}}, \\ f'(x) &= 1 + \frac{1}{x^2 + (x+1)^2}. \end{aligned}$$

3) Study of the extension by continuity of f at $x_0 = 0$: $0 \notin D_f$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \left(x - \arctan \frac{x+1}{x} \right) = -\frac{\pi}{2},$$
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \left(x - \arctan \frac{x+1}{x} \right) = \frac{\pi}{2},$$

then, f does not admit a limit at 0.

Therefore, f does not admit an extension by continuity at 0.

4) Let us show that : $\forall x \ge 0, \frac{x}{1+x^2} \le \arctan x \le x.$

We study two cases :

 1^{st} **case** : if x = 0 :

we directly substitute into the inequality : $\frac{0}{1+0^2} \le \arctan 0 = 0 \le 0$, so, the inequality holds.

 2^{nd} **case** : if x > 0 :

we apply the Mean Value Theorem,

we take $g(t) = \arctan t$ and [a, b] = [0, x],

$$g'(t) = \frac{1}{1+t^2}.$$

g is continuous on [0, x] and derivable on]0, x[, then, according to the Mean Value Theorem

$$\exists c \in]0, x[\text{ such that } g(x) - g(0) = (x - 0)g'(c),$$

then, $\arctan x - \arctan 0 = (x - 0)\frac{1}{1 + c^2},$
so, $\arctan x = \frac{x}{1 + c^2}.$

On the other hand, we have

$$c \in]0, x[\Longrightarrow 0 < c < x \Longrightarrow 1 < 1 + c^2 < 1 + x^2,$$

 $\text{then}, \ \frac{1}{1+x^2} < \frac{1}{1+c^2} < 1 \Longrightarrow \frac{x}{1+x^2} < \frac{x}{1+c^2} < x,$ thus, $\frac{x}{1+x^2} < \arctan x < x$.

Conclusion: $\forall x \ge 0, \ \frac{x}{1+x^2} \le \arctan x \le x.$

Exercise 222 Let the function $f(x) = \arcsin \frac{x}{1+x}$.

- 1) Find the domain of definition D_f of the function f.
- 2) Study the continuity and derivability of the function f and calculate f'.

Solution :

1)
$$f(x) = \arcsin \frac{x}{1+x}$$
.

The function $\arcsin x$ is defined on [-1, 1], then

$$D_f = \left\{ x \in \mathbb{R}/ -1 \le \frac{x}{1+x} \le 1 \right\} = \left\{ x \in \mathbb{R}/ \left| \frac{x}{1+x} \right| \le 1 \right\},$$
$$\left| \frac{x}{1+x} \right| \le 1 \Longleftrightarrow \frac{x^2}{(1+x)^2} \le 1 \Longleftrightarrow x^2 \le (1+x)^2 = x^2 + 2x + 1$$

$$\iff 2x + 1 \ge 0 \iff x \ge -\frac{1}{2}.$$

Then, $D_f = \left\lfloor -\frac{1}{2}, +\infty \right\rfloor$.

2) Study of the continuity and derivability of the function f.

f is continuous on D_f because it is the sum, the product, and the composition of continuous functions on D_f .

f is derivable on $\left] -\frac{1}{2}, +\infty \right[$ because it is the sum, the product, and the composition of derivable functions on $\left] -\frac{1}{2}, +\infty \right[$.

$$\begin{aligned} \forall x \in \left] -\frac{1}{2}, +\infty \right[, \\ f'(x) &= \left(\frac{x}{1+x}\right)' \frac{1}{\sqrt{1 - \left(\frac{x}{1+x}\right)^2}} = \frac{1}{(1+x)^2} \frac{1}{\sqrt{\frac{(x+1)^2 - x^2}{(1+x)^2}}}, \\ \forall x \in \left] -\frac{1}{2}, +\infty \left[, f'(x) = \frac{1}{(1+x)} \frac{1}{\sqrt{2x+1}}. \end{aligned}$$

Chapter 6

Usual formulas

6.1 Partial sum of an arithmetic sequence

 $U_n = U_0 + nr, \ r \in \mathbb{R}^*.$

 $S_n = U_0 + U_1 + U_2 + \dots + U_n = (U_0 + U_n)\frac{n+1}{2}.$

6.2 Partial sum of a geometric sequence

$$U_n = U_0 q^n, \ q \neq 1,$$

$$S_n = U_0 + U_1 + U_2 + \dots + U_n = U_0 \left(\frac{1 - q^{n+1}}{1 - q}\right)$$

If $q = 1, S_n = (n+1)U_0.$

$$\lim_{n \to +\infty} q^n = 0 \iff -1 < q < 1$$

6.3 Trigonometry Formulas

1) $\sin(a+b) = \sin a \cos b + \sin b \cos a$, so $\sin 2a = 2 \sin a \cos a$.

- 2) $\sin(a-b) = \sin a \cos b \sin b \cos a$.
- 3) $\cos(a+b) = \cos a \cos b \sin a \sin b$, so $\cos 2a = \cos^2 a \sin^2 a$.
- 4) $\cos(a-b) = \cos a \cos b + \sin a \sin b$.

5)
$$\cos 2a = 2\cos^2 a - 1$$
, so $\cos^2 a = \frac{\cos 2a + 1}{2}$.
6) $\cos 2a = 1 - 2\sin^2 a$, so $\sin^2 a = \frac{1 - \cos 2a}{2}$.

7)
$$\sin p + \sin q = 2 \sin \frac{p+q}{2} \cos \frac{p-q}{2}$$
.
8) $\sin p - \sin q = 2 \sin \frac{p-q}{2} \cos \frac{p+q}{2}$.
9) $\cos p + \cos q = 2 \cos \frac{p-q}{2} \cos \frac{p+q}{2}$.
10) $\cos p - \cos q = -2 \sin \frac{p-q}{2} \sin \frac{p+q}{2}$.
11) $\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \cdot \tan b}$.
12) $\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \cdot \tan b}$.

Relation between sine and cosine $\sin^2 x + \cos^2 x = 1$, $\forall x \in \mathbb{R}$.

6.4 Common values

nombre	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
sinus	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
cosinus	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
tangente	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$		0

6.5 Properties of hyperbolic functions

Hyperbolic sine : $shx = \frac{e^x - e^{-x}}{2}, \forall x \in \mathbb{R}.$ Hyperbolic cosine : $chx = \frac{e^x + e^{-x}}{2}, \forall x \in \mathbb{R}.$ 1) $chx + shx = e^x.$ 2) $chx - shx = e^{-x}.$ 3) $ch^2x - sh^2x = 1.$ 4) ch(x + y) = chx.chy + shx.shy.5) $ch(2x) = ch^2x + sh^2x = 1 + 2sh^2x = 2ch^2x - 1.$ 6) sh(x + y) = shx.chy + shy.chx.7) sh(2x) = 2shx.chx.

6.6 Derivatives of usual functions

The function	The derivative
$f(x) = x^n$	$f'(x) = nx^{n-1}, \forall x \in \mathbb{R}$
$f(x) = \ln x$	$f'(x) = \frac{1}{x}, \forall x > 0$
$f(x) = e^x$	$f'(x) = e^x, \forall x \in \mathbb{R}$
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}, \forall x > 0$
$f(x) = \sin x$	$f'(x) = \cos x, \forall x \in \mathbb{R}$
$f(x) = \cos x$	$f'(x) = -\sin x, \forall x \in \mathbb{R}$
$f(x) = \tan x = \frac{\sin x}{\cos x}$	$f'(x) = \frac{1}{\cos^2 x} = 1 + \tan^2 x, x \neq \frac{\pi}{2} + k\pi$
$f(x) = shx = \frac{e^x - e^{-x}}{2}$	$f'(x) = chx = \frac{e^x + e^{-x}}{2}, \forall x \in \mathbb{R}$
f(x) = chx	$f'(x) = shx, \forall x \in \mathbb{R}$
$f(x) = thx = \frac{shx}{chx}$	$f'(x) = \frac{1}{ch^2x} = 1 - th^2x, \forall x \in \mathbb{R}$
$f(x) = \arcsin x, \forall x \in [-1, 1]$	$f'(x) = \frac{1}{\sqrt{1 - x^2}}, \forall x \in \left] -1, 1\right[$
$f(x) = \arccos x, \forall x \in [-1, 1]$	$f'(x) = \frac{-1}{\sqrt{1-x^2}}, \forall x \in \left] -1, 1\right[$
$f(x) = \arctan x$	$f'(x) = \frac{1}{1+x^2}, \forall x \in \mathbb{R}$
$f(x) = \arg shx$	$f'(x) = \frac{1}{\sqrt{x^2 + 1}}$
$f(x) = \arg chx$	$f'(x) = \frac{1}{\sqrt{x^2 - 1}}$
$f(x) = \arg thx$	$f'(x) = \frac{1}{1 - x^2}$
$f(x) = (U(x))^n$	$f'(x) = nU'(x)U^{n-1}(x)$
$f(x) = \ln(U(x))$	$f'(x) = rac{U'(x)}{U(x)}$
$f(x) = e^{ax}$	$f'(x) = ae^{ax}, \forall x \in \mathbb{R}$

6.7 Lexicon

Α

- Absolute value : valeur absolue.

- Absolute convergence : convergence absolue.
- Almost : presque.
- Analysis : analyse.
- Antisymetric : antisymétrique.
- Apex : sommet.
- Argument : argument.
- Arithmetic : arithmétique.
- Array : tableau.
- Assume : supposer.
- Assumption : supposition.
- Axiom : axiome.
- Axis : axe.

В

- Basis : base.
- Bijective : bijective.
- Bounded : borné.
- Bracket : parenthèse.
- By induction : par récurrence.
- \mathbf{C}
- Calculus : calcul.
- Cartesian coordinate system.: Repère cartésien.
- Cauchy sequence : suite de Cauchy.
- Center : centre
- Characteristic : caractéristique.
- Characteristic polynomial : polynôme caractéristique.
- Circle : cercle.
- Closed : fermé.
- Coefficient : coefficient.
- Combination : combinaison.
- Common factor : facteur commun.
- Commutative : commutatif.
- Complete : complet.
- Complex number : nombre complexe.
- Computation : calcul.
- Consequently : par conséquent.
- Constant : constante.
- Continuity : continuité.
- Continuous (function) : continue (fonction).
- Contraction : contraction.
- Convergence : convergence.
- Converge to a limit : converger vers une limite.
- Converse of a theorem : réciproque d'un théorème.

6.7. LEXICON

- Conversely : réciproquement.
- Coordinate : coordonnée.
- Cosine : cosinus.
- Countable : dénombrable.
- Counterexample : contre-exemple.
- Coverage of a set : recouvrement d'un ensemble.
- Cube root : racine cubique.
- Curve : courbe.

D

- Decomposition : décomposition.
- Decreasing function : fonction décroissante.
- Defined : défini.
- Degree : degré.
- Delete (to) : supprimer.
- Denote : noter.
- Density : densité.
- Derivative : dérivée.
- Direct sum : somme directe.
- Divide : diviser.
- Dot : point.

 \mathbf{E}

- Eigenvalue : valeur propre.
- Eigenvector : vecteur propre.
- Element : élément.
- Endpoint : Extrémité.
- Entire function : fonction entière.
- Equality : égalité.
- Equation : équation.
- Equilateral triangle : triangle equilatéral.
- Equivalence relation : relation d'équivalence.
- Equivalent : équivalent
- Euclidean : euclidien.
- Even : pair.
- Everywhere : partout.
- Exact : exact.
- Example : exemple.
- Exponential : exponentiel.

 \mathbf{F}

- Factorial : factoriel.
- Factorise : factoriser
- Field : corps.
- Finite : fini.

- Finite dimensional real vector space : espace vectoriel réel de dimension finie

- Fixed : fixe.
- Fixed point : point fixe.

- Formula : formule.
- Fractional line : trait de fraction.
- Free : libre.
- Function : fonction.
- Fundamental : fondamental.

\mathbf{G}

- Graph : graphe.
- Greatest : plus grand (le).
- Greatest common divisor (gcd) : pgcd.
- Group : groupe.

\mathbf{H}

- Higher derivative : dérivée d'ordre supérieur.
- Homogeneous : homogène.
- However : toutefois.
- Hyperbola : hyperbole.
- Hypotenuse : hypoténuse.
- Hypothesis : hypothèse.

Ι

- Identity : identité.
- Identity element : élément neutre.
- If and only if : si et seulement si.
- Increasing function : fonction croissante.
- Indeed : en effet.
- Independent : indépendant.
- Induction : récurrence.
- Inequality : inégalité.
- Infimum (greatest lower bound) : borne inférieure.
- Infinite : infini.
- Integer number : nombre entier.
- Integral : intégrale.
- Intermediate value theorem : théorème des valeurs intermédiaires.
- Interval : intervalle.
- inverse image : image réciproque.
- Invertible : inversible.
- Involve : impliquer.
- Irreducible : irréductible.
- Isocel triangle : triangle isocèle
- Isolated : isolé.
- Isomorphism : isomorphisme.
- \mathbf{J}

 \mathbf{K}

- Kernel : noyau.

\mathbf{L}

- Law of composition : loi de composition.
- Least : plus petit.
- Least common multiple (lcm) : ppcm.

6.7. LEXICON

- Lemma : lemme.
- Length : longueur.
- Less than : plus petit que
- Let....be : so it.
- Limit : limite
- Linear : linéaire.
- Linearly independent family : famille libre.
- Lower limit : limite inférieure.
- Lower bound : minorant.

 \mathbf{M}

- Major : majeur.
- Majorized : majoré
- Manifold : variété.
- Map : application.
- Maximal : maximal.
- Mean : moyenne.
- Meet of two sets : intersection de deux ensembles.
- Merely : seulement.
- Minimal : minimal.
- Minorized : minoré.
- Monic : unitaire.
- Monotonic function : fonction monotone.
- Multiplicity : multiplicité.
- Multiply : multiplier.

Ν

- Necessary condition : condition nécessaire.
- Negligible : négligeable.
- Neighborhood : voisinage.
- Neperian logarithm : logarithme népérien.
- Non-empty : non vide.
- Not all zero : non tous nuls.
- Null : nul.
- Number : nombre.
- Numerator : numérateur.

- Object : objet.
- Odd : impair.
- One-to-one map : application injective.
- Onto (a map) : surjective.
- Open : ouvert.
- Operator : opérateur.
- Order : ordre.
- Order or multiplicity of a root : ordre de multiplicité d'une racine.
- Order relation : relation d'ordre.
- Ordinate : ordonnée.

- Parameter : paramètre
- Partial fraction expansion : décomposition en éléments simples.
- Partial order : relation d'ordre.
- Partition : partition.
- Perfect : parfait.
- Period : période.
- Periodicity : périodicité.
- Permutation : permutation.
- Plane : plan.
- Point : point.
- Polynomial : polynôme.
- Power : puissance.
- Prime : premier.
- Prime number : nombre premier.
- Product : produit.
- Proof : preuve.
- Proper : propre.
- Property : propriété.
- Pythagorean triple : triplet pythagoricien.

\mathbf{Q}

 \mathbf{R}

- Radius : rayon
- Raise to the power n : élever à la puissance n.
- Range : image.
- Rank : rang.
- Ratio : rapport.
- Rational function : fonction rationnelle.
- Real number : nombre réel.
- Rectangle : rectangle.
- Reduced : réduit.
- Regular : régulier
- Relatively prime integers : entiers premiers entre eux.
- Remark : remarque.
- representation : représentation.
- Right-hand side : membre de droite.
- Ring : anneau.
- Root : racine.
- Row : ligne.
- Rule : règle.
- Ruler : règle (instrument).
- \mathbf{S}
- Scalar : scalaire.
- Schwarz inequality : inégalité de Schwarz.
- Section : section.
- Segment : segment.
- Sequence : suite.

6.7. LEXICON

- Series : série.
- Set : ensemble.
- Several : plusieurs.
- Shape : forme.
- Sign : signe.
- Sine : sinus.
- Singular : singulier.
- Size : taille.
- Small : petit.
- Smooth : lisse.
- Space : espace.
- Square : élever au carré.
- Square : carré.
- Square root : racine carré.
- Star : Etoile.
- Strictly : strictement
- Sub : sous-
- Subgroup : sous-groupe.
- Subset : sous-ensemble (partie).
- Subspace : sous-espace.
- Subtract : soustraire.
- Subtraction : soustraction.
- Sufficient : suffisant.
- Sufficient condition : condition suffisante.
- Sum : somme.
- Summarize (to) : résumer.
- Support : support.
- Supremum (least upper bound) : borne supérieure.
- Surface : surface.
- Symmetric : symétrique.
- Symmetry : symétrie.
- System of linear equations : système d'équations linéaires.

 \mathbf{T}

- Tangent : tangente.
- Term : terme.
- Theorem : théorème.
- Theory : théorie.
- Totally ordered set : ensemble totalement ordonné.
- Trace : trace.
- Trajectory : trajectoire.
- Transform : transformation.
- Transitive : transitif.
- Translation : translation.
- Transpose : transposé.
- Trapezoid : trapèze.
- Triangle : triangle.

- Triangle inequality : inégalité triangulaire.
- Trivial : trivial.
- Type : type.

 \mathbf{U}

- Uncountable : indénombrable.
- Uniform continuity : continuité uniforme.
- Union : réunion.
- Universal : universel.
- Unknown : inconnue.
- Upper bound : majorant.

 \mathbf{V}

- Value : Valeur.
- Variable : variable.
- Vector : vecteur.
- Vector space : espace vectoriel.
- Volume : volume.

\mathbf{W}

- Well-defined : bien défini.
- Width : largeur.
- Without loss of generality : sans perte de généralité.
- \mathbf{X}
- Y
- \mathbf{Z}
- Zéro : zero.
- Zero of a polynomial : racine d'un polynôme.

Bibliography

- [1] K. Allab. Eléménts d'analyse. Vuibert (Paris).
- [2] C. Baba-Hamed, K. Benhabib. Analyse I. OPU Alger. 1985.
- [3] C. Djebour. Analyse1 Examens Corrigés. OPU Oran. 2006.
- [4] M. H. Mortad. Exercices corrigés d'Analyse. Editions Houma. 2019.
- [5] https://www.bibmath.net/trans/index.php?action=liste&prem=e&fin=m&origine=e