ANALYSIS 2 Course & Exercises

Chahnaz Zakia TIMIMOUN

Mai 2025 University Oran1 Ahmed Ben Bella Department of Mathematics

Contents

Introduction						
1	\mathbf{Rie}	mann	integrals and Antiderivatives	1		
	1.1	Riema	ann integral	1		
		1.1.1	Subdivision	1		
		1.1.2	Darboux Sum	1		
		1.1.3	Lower Darboux integral and upper Darboux integral	2		
		1.1.4	Riemann integral	3		
		1.1.5	Riemann sum	4		
		1.1.6	Properties of the integral	6		
	1.2	Integr	als and antiderivatives	8		
		1.2.1	Antiderivatives	8		
		1.2.2	Indefinite integral	9		
	1.3	Gener	al methods of integration	10		
		1.3.1	Integration by parts	10		
		1.3.2	Change of variable	11		
		1.3.3	Partial fraction decomposition	13		
		1.3.4	Antiderivatives of rational functions	14		
	1.4	Exerc	ises	18		
2	Differential equations of the first and second order					
	2.1	Differ	rential equations of the first order	23		
		2.1.1	Differential equations with separable variables	23		
		2.1.2	Homogeneous differential equations	25		
		2.1.3	Linear differential equations of the first order	28		
		2.1.4	Bernoulli differential equations	32		
		2.1.5	Riccati differential equations	34		
	2.2	Linear	r differential equations of second order	36		
		2.2.1	Linear differential equations of second order with constant coefficients	36		
		2.2.2	Principle of superposition	39		
	2.3	Exerc		41		

iv CONTENTS

3	Usu	al formulas	49
	3.1	Partial sum of an arithmetic sequence	49
	3.2	Partial sum of a geometric sequence	49
	3.3	Trigonometry Formulas	49
	3.4	Common values	50
	3.5	Properties of hyperbolic functions	50
	3.6	Derivatives of usual functions	5.
	3.7	Antiderivatives of usual functions	52
	3.8	Lexicon	53

Chapter 1

Riemann integrals and Antiderivatives

1.1 Riemann integral

1.1.1 Subdivision

Definition 1 Let [a,b] be a closed bounded interval of \mathbb{R} . We call subdivision of [a,b], any increasing sequence $d=(x_0,x_1,x_2,....,x_n)$ of points of [a,b] such that $x_0=a < x_1 < x_2 < < x_n = b$.

We obtain n intervals $[x_i, x_{i+1}]$ $(i \in \{0, 1, 2, ..., (n-1)\})$, called partial intervals of the subdivision.

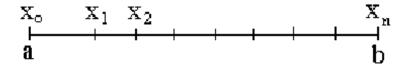
1.1.2 Darboux Sum

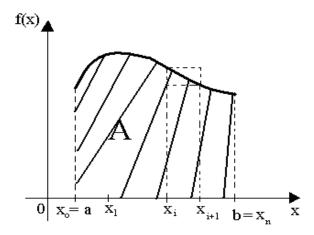
Let $f:[a,b] \longrightarrow \mathbb{R}$ be a bounded function, i.e.

$$\exists m, M \in \mathbb{R}, \forall x \in [a, b], \ m \le f(x) \le M.$$

Definition 2 The integral of a positive function over the interval [a,b] is the area of the region A enclosed by the curve of f, the axis (OX) and the two lines with equations x = a and x = b.

We consider the subdivision $d = (x_0, x_1, x_2,, x_n)$ of the interval [a, b].





We set

$$m_{i} = \inf_{x \in [x_{i}, x_{i+1}]} f(x), \quad i \in \{0, 1, 2,, (n-1)\},$$

$$M_{i} = \sup_{x \in [x_{i}, x_{i+1}]} f(x), \quad i \in \{0, 1, 2,, (n-1)\}.$$

Definition 3 - The lower Darboux sum is the following surface :

$$s(f,d) = \sum_{i=0}^{n-1} m_i (x_{i+1} - x_i).$$

-The upper Darboux sum is the following surface :

$$S(f,d) = \sum_{i=0}^{n-1} M_i(x_{i+1} - x_i).$$

Remark 4 Since $m_i \leq M_i$, then we have $s(f,d) \leq A \leq S(f,d)$.

1.1.3 Lower Darboux integral and upper Darboux integral

Definition 5 We define the following two sets:

$$\begin{split} D_s(f) &= \left\{ s(f,d) \ / \ d \ subdivision \ of \ [a,b] \right\}, \\ D_S(f) &= \left\{ S(f,d) \ / \ d \ subdivision \ of \ [a,b] \right\}. \end{split}$$

- The lower Darboux integral of f over [a,b] is the following value :

$$\inf \int_{a}^{b} f(x)dx := \sup D_{s}(f).$$

3

- The upper Darboux integral of f over [a,b] s the following value :

$$\sup \int_{a}^{b} f(x)dx := \inf D_{S}(f).$$

Remark 6 We have $s(f,d) \leq \sup D_s(f) \leq \inf D_S(f) \leq S(f,d)$, therefore

$$s(f,d) \le \inf \int_a^b f(x)dx \le \sup \int_a^b f(x)dx \le S(f,d).$$

1.1.4 Riemann integral

Definition 7 Let $f:[a,b] \longrightarrow \mathbb{R}$ be a bounded function. We say that f is Riemann-integrable on [a,b] if

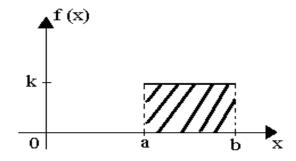
$$\inf \int_{a}^{b} f(x)dx = \sup \int_{a}^{b} f(x)dx.$$

Remark 8 The common value of the lower and upper Darboux integrals is then called the Riemann integral of f over [a,b] and it is denoted

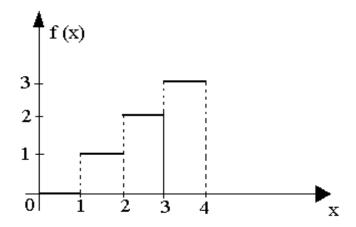
$$\int_{a}^{b} f(x)dx = \inf \int_{a}^{b} f(x)dx = \sup \int_{a}^{b} f(x)dx.$$

Example 9 $f:[a,b] \longrightarrow \mathbb{R} \ / \ f(x) = k, \quad k \in \mathbb{R}.$

$$\int_{a}^{b} f(x)dx = k(b-a).$$



Example 10
$$\int_{0}^{4} [x] dx = 0 + 1(2-1) + 2(3-2) + 3(4-3) = 6.$$



1.1.5 Riemann sum

Definition 11 Let $c_i \in [x_i, x_{i+1}]$. The sum $\sigma(f, d) = \sum_{i=0}^{n-1} f(c_i)(x_{i+1} - x_i)$ is called the Riemann sum of f corresponding to d and $C = (c_0, \ldots, c_{n-1})$.

Remark 12 Since $x_i \leq c_i \leq x_{i+1}$, then we have $m_i \leq f(c_i) \leq M_i$ and hence we obtain $s(f,d) \leq \sigma(f,d) \leq S(f,d)$.

The step size of the subdivision

Let the subdivision $d = (x_0, x_1, \ldots, x_n)$ of the interval [a, b]. The real number $\delta(d) = \max_{0 \le i \le n-1} (x_{i+1} - x_i)$ is called the step size of the subdivision d of the interval [a, b].

Theorem 13 If f is Riemann integrable over [a,b], then

$$\lim_{\delta(d) \longrightarrow 0} \sigma(f, d) = \int_{a}^{b} f(x) dx.$$

Theorem 14 Any function continuous on [a,b] is integrable over [a,b].

Consequence:

Let $f:[a,b] \longrightarrow \mathbb{R}$ be a continuous function on [a,b], then f is integrable sur [a,b]. We consider the following uniform subdivision $((x_{i+1}-x_i)=\text{constant})$:

$$d_n = (x_0 = a, \ x_1 = a + \frac{b-a}{n}, \ x_2 = a + 2\frac{b-a}{n}, ..., x_i = a + i\frac{b-a}{n}, ..., x_n = b).$$

It is an arithmetic sequence with a common difference $r = \frac{b-a}{n} = \delta(d_n) = x_{i+1} - x_i$. We take $c_i = x_i = a + i \frac{b-a}{n}$.

$$\sigma(f, d_n) = \sum_{i=0}^{n-1} f(c_i)(x_{i+1} - x_i) = \sum_{i=0}^{n-1} f(x_i) \left(\frac{b - a}{n}\right)$$
$$= \left(\frac{b - a}{n}\right) \sum_{i=0}^{n-1} f(a + i\frac{b - a}{n}),$$

then

$$\lim_{n \longrightarrow +\infty} \sigma(f, d_n) = \lim_{\delta(d_n) \longrightarrow 0} \sigma(f, d_n) = \int_a^b f(x) dx,$$

hence

$$\lim_{n \to +\infty} \left(\frac{b-a}{n}\right) \sum_{i=0}^{n-1} f(a+i\frac{b-a}{n}) = \int_a^b f(x)dx.$$

Conclusion:

$$f$$
 continuous on $[a,b] \Longrightarrow \int_a^b f(x)dx = \lim_{n \to +\infty} \left(\frac{b-a}{n}\right) \sum_{i=0}^{n-1} f(a+i\frac{b-a}{n}).$

Special case: if a = 0 and b = 1, then

$$\int_{0}^{1} f(x)dx = \lim_{n \longrightarrow +\infty} \frac{1}{n} \sum_{i=0}^{n-1} f(\frac{i}{n}).$$

Example 15 Using the definition, calculate the following integral:

$$\int_{a}^{b} kx \, dx = \lim_{n \to +\infty} \left(\frac{b-a}{n} \right) \sum_{i=0}^{n-1} k(a+i\frac{b-a}{n})$$

$$= k(b-a) \lim_{n \to +\infty} \frac{1}{n} \sum_{i=0}^{n-1} (a+i\frac{b-a}{n})$$

$$= k(b-a) \lim_{n \to +\infty} \frac{1}{n} \left(\frac{n}{2} \right) \left(a+a + \left(\frac{n-1}{n} \right) (b-a) \right)$$

$$= k(b-a) \left(\frac{b+a}{2} \right) = \frac{k}{2} (b^2 - a^2).$$

Theorem 16 Any function $f:[a,b] \longrightarrow \mathbb{R}$ monotonous is integrable on [a,b].

Theorem 17 If a bounded function $f:[a,b] \longrightarrow \mathbb{R}$ is continuous on [a,b] except at a finite number of points of [a,b], then f is integrable on [a,b].

Example 18
$$\int_{0}^{4} [x] dx = 0 + 1(2-1) + 2(3-2) + 3(4-3) = 6.$$

The floor function [x] is not continuous at the points $: 1, 2, 3 \in [0, 4]$.

1.1.6 Properties of the integral

Property 1:

- If
$$a < b$$
, then
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx.$$
- If $a = b$, then
$$\int_{a}^{b} f(x)dx = 0.$$

Property 2:

If f is an integrable function on [a, b] and if $\forall x \in [a, b], f(x) \geq 0$, then $\int_{a}^{b} f(x)dx \geq 0.$

Property 3:

If f and g are integrable functions on [a,b], then the function (f+g) is integrable on [a,b] and we have $\int_{a}^{b} (f+g)(x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx.$

Property 4:

If f is an integrable function on [a,b], then the function λf ($\lambda \in \mathbb{R}$) is integrable on [a,b] and we have $\int\limits_a^b \lambda f(x)dx = \lambda \int\limits_a^b f(x)dx$.

Remark 19 From propositions 3 and 4, it follows that the set of functions integrable over [a,b] is a vector space on \mathbb{R} denoted R[a,b].

Property 5:

If f and g are integrable functions on [a,b] and if $\forall x \in [a,b], f(x) \geq g(x),$ then $\int\limits_a^b f(x)dx \geq \int\limits_a^b g(x)dx.$

Property 6:

If f is an integrable function on [a,b], then f is integrable over each interval $[\alpha,\beta]\subset [a,b]$.

7

Property 7:

1) Let $c \in]a,b[$. If f is integrable separately over [a,c] and [c,b], then f is integrable on [a,b] .

2) If
$$f$$
 is integrable on $[a,b]$ and $c \in]a,b[$, then $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_a^b f(x)dx$.

If f is an integrable function on [a, b], then |f| is integrable on [a, b] and we have $\left|\int_{a}^{b} f(x)dx\right| \leq \int_{a}^{b} |f(x)| dx$.

Property 9:

If f and g are integrable functions on [a, b], then the function (f.g) is integrable on [a, b].

Theorem 20 (Schwarz inequality)

Let f and g be two integrable functions on [a, b], then

$$\left(\int\limits_a^b f(x)g(x)dx\right)^2 \leq \int\limits_a^b f^2(x)dx.\int\limits_a^b g^2(x)dx.$$

Theorem 21 (Mean Value Formula)

Let f and g be two integrable functions on [a,b], g having a constant sign on [a,b] $(g \ge 0 \text{ or } g \le 0)$. We set $M = \sup_{x \in [a,b]} f(x)$ and $m = \inf_{x \in [a,b]} f(x)$.

Then, there exists
$$\mu \in [m, M] / \int_{b}^{a} f(x)g(x)dx = \mu \int_{b}^{b} g(x)dx$$
.

If moreover f is continuous, there exists $c \in [a, b]$ such that $\mu = f(c)$,

i.e.
$$\int_{a}^{b} f(x)g(x)dx = f(c)\int_{a}^{b} g(x)dx.$$

Example 22 Using the mean value formula, calculate the following limit:

$$\lim_{x \longrightarrow 0} \int_{x}^{kx} \frac{\cos t}{t} dt, \quad k > 0.$$

We set $f(t) = \cos t$ and $g(t) = \frac{1}{t}$. The functions f and g are continuous on [x, kx] $(x \neq 0)$, then f and g are integrable on [x, kx]. The function g has a constant sign on [x, kx], then from the mean value formula, there exists $c \in [x, kx]$ such that

$$\lim_{x \to 0} \int_{x}^{kx} \frac{\cos t}{t} dt = \lim_{x \to 0} \cos c \int_{x}^{kx} \frac{1}{t} dt = \lim_{x \to 0} \cos c \cdot \left[\ln |t| \right]_{x}^{kx} = \lim_{x \to 0} \cos c \cdot \ln \left| \frac{kx}{x} \right|$$
$$= \lim_{c \to 0} \cos c \cdot \ln |k| = \ln k.$$

1.2 Integrals and antiderivatives

Let $f:[a,b] \longrightarrow \mathbb{R}$ be an integrable function on [a,b] and $c \in [a,b]$ be a fixed point. We consider the function $F:[a,b] \longrightarrow \mathbb{R}$ such that $F(x) = \int_{a}^{x} f(t)dt$.

Theorem 23 1) The function F is uniformly continuous on [a,b]. 2) If f is continuous on [a,b], then F is derivable on [a,b] and $\forall x \in [a,b]$, F'(x) = f(x).

1.2.1 Antiderivatives

Definition 24 Let a function $f : [a,b] \longrightarrow \mathbb{R}$. We say that a derivable function $F : [a,b] \longrightarrow \mathbb{R}$ is an antiderivative of f if $\forall x \in [a,b]$, F'(x) = f(x).

Proposition 25 Let F_1 and F_2 two antiderivatives of f. Then $(F_1 - F_2)$ is constant.

Indeed,
$$(F_1 - F_2)' = F_1' - F_2' = f - f = 0 \Longrightarrow F_1 - F_2 = k$$
, $(k \in \mathbb{R})$.

Conclusion:

If F is an antiderivative of f, then F is not unique because for all $k \in \mathbb{R}$, F + k is also an antiderivative of f.

Theorem 26 Every continuous function $f:[a,b] \longrightarrow \mathbb{R}$, has an antiderivative. The function $F:[a,b] \longrightarrow \mathbb{R}$ such that $F(x) = \int_{c}^{x} f(t)dt$, $(c \in [a,b] \ a$ fixed point) is an antiderivative of f.

9

Theorem 27 Let f be a continuous function on [a,b] and G any antiderivative

of f. Then,
$$\int_{a}^{b} f(x)dx = G(b) - G(a)$$
.

Remark 28 1) In the definition of the antiderivative, we can take instead of [a,b], any interval I of \mathbb{R} , in particular $I = \mathbb{R}$.

2) If F is an antiderivative of f on [a,b], this does not imply that f is continuous on [a,b].

Example 29 Let the function defined by

$$F(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

$$F'(0) = \lim_{x \to 0} \frac{F(x) - F(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin\frac{1}{x}}{x} = \lim_{x \to 0} x \sin\frac{1}{x} = 0.$$

Then, F is derivable on \mathbb{R} and its derivative is the following function

$$F'(x) = f(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Hence, F is an antidirivative of f. However, f is not continuous at the point 0. Indeed, $\lim_{x \longrightarrow 0} f(x) = \lim_{x \longrightarrow 0} \left(2x \sin \frac{1}{x} - \cos \frac{1}{x} \right)$ does not exist, since $\lim_{x \longrightarrow 0} \cos \frac{1}{x}$ does not exist.

1.2.2 Indefinite integral

Definition 30 Let the function $f:[a,b] \longrightarrow \mathbb{R}$. The set of all antiderivatives of the function f is called the indefinite integral of f and is denoted by $\int f(x)dx$.

Thus, if F is any antiderivative of f, we have

$$\int f(x)dx = \{F(x) + C, \ C \in \mathbb{R}\}.$$

We will write

$$\int f(x)dx = F(x) + C, \ C \in \mathbb{R}.$$

Theorem 31 (Properties of the indefinite integral)

If f and g have antiderivatives, then (f+g) and λf $(\lambda \in \mathbb{R})$ also have antiderivatives, and we have

1)
$$\int (f+g)(x)dx = \int f(x)dx + \int g(x)dx.$$

2)
$$\int \lambda f(x)dx = \lambda \int f(x)dx$$
.

Example 32 1) $\int \cos(x)dx = \sin(x) + C, C \in \mathbb{R}.$

2)
$$\int \frac{1}{x} dx = \ln|x| + C, \ C \in \mathbb{R}.$$

3)
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \ C \in \mathbb{R}, \ n \neq -1.$$

4)
$$\int e^{3x} dx = \frac{e^{3x}}{3} + C, \ C \in \mathbb{R}.$$

5)
$$\int \sin^2(x)dx = \frac{1}{2} \int (1 - \cos(2x))dx = \frac{x}{2} - \frac{\sin(2x)}{4} + C, \ C \in \mathbb{R}.$$

Remark 33 Let f be a continuous function on [a,b] and let two derivable func-

tions
$$u, v : [\alpha, \beta] \longrightarrow [a, b]$$
. Then, the function $g(x) = \int_{u(x)}^{s(x)} f(t)dt$ is derivable

and we have g'(x) = f(v(x)).v'(x) - f(u(x)).u'(x).

Indeed, let F be an antiderivative of f (i.e. F' = f).

$$g(x) = F(v(x)) - F(u(x)) \Longrightarrow g'(x) = F'(v(x)) \cdot v'(x) - F'(u(x)) \cdot u'(x),$$

then,
$$g'x) = f(v(x)).v'(x) - f(u(x)).u'(x)$$
.

1.3 General methods of integration

1.3.1 Integration by parts

Theorem 34 Let u and v be two continuously derivable functions on [a, b]. Then, we have

$$\int_{a}^{b} u(x).v'(x)dx = [u(x).v(x)]_{a}^{b} - \int_{a}^{b} u'(x).v(x)dx,$$

where
$$[u(x).v(x)]_a^b = u(b).v(b) - u(a).v(a)$$
.

Indeed,
$$(u.v)' = u.v' + u'.v$$
,
then, $\int_{a}^{b} (u(x).v(x))'dx = [u(x).v(x)]_{a}^{b} = \int_{a}^{b} u(x).v'(x)dx + \int_{a}^{b} u'(x).v(x)dx$,
hence, $\int_{a}^{b} u(x).v'(x)dx = [u(x).v(x)]_{a}^{b} - \int_{a}^{b} u'(x).v(x)dx$.

Example 35 Calculate $I = \int_{0}^{1} \arctan(x) dx$.

We set

$$\begin{cases} u(x) &= \arctan(x) \\ v'(x) &= 1 \end{cases} \implies \begin{cases} u'(x) &= \frac{1}{1+x^2}, \\ v(x) &= x, \end{cases}$$

then.

$$I = \int_{0}^{1} \arctan(x)dx = \left[x.\arctan(x).\right]_{0}^{1} - \int_{0}^{1} \frac{x}{1+x^{2}}dx = \frac{\pi}{4} - \frac{1}{2}\int_{0}^{1} \frac{2x}{1+x^{2}}dx,$$

$$I = \frac{\pi}{4} - \frac{1}{2}\left[\ln(1+x^{2})\right]_{0}^{1} = \frac{\pi}{4} - \frac{1}{2}\ln(2).$$

Example 36 Calculate $J = \int x^2 \ln(x) dx$.

We set

$$\begin{cases} u(x) &= \ln(x) \\ v'(x) &= x^2 \end{cases} \Longrightarrow \begin{cases} u'(x) &= \frac{1}{x}, \\ v(x) &= \frac{x^3}{3}, \end{cases}$$
$$J = \int x^2 \ln(x) dx = \frac{x^3}{3} \ln(x) - \int \frac{x^2}{3} dx = \frac{x^3}{3} \ln(x) - \frac{x^3}{9} + C, \quad C \in \mathbb{R}.$$

1.3.2 Change of variable

Theorem 37 Let $f:[a,b] \longrightarrow \mathbb{R}$ be a continuous function and $\varphi:[\alpha,\beta] \longrightarrow [a,b]$ be a continuously derivable function such that $\varphi(\alpha) = a$ and $\varphi(\beta) = b$.

Then, the function $g: [\alpha, \beta] \longrightarrow \mathbb{R}$ such that $g(t) = f(\varphi(t)).\varphi'(t)$ is integrable on $[\alpha, \beta]$ and we have

$$\int_{a}^{b} f(x)dx = \int_{a}^{\beta} f(\varphi(t)).\varphi'(t)dt.$$

Remark 38 We set $x = \varphi(t) \Longrightarrow x' = \varphi'(t) \Longrightarrow \frac{dx}{dt} = \varphi'(t)$, then $dx = \varphi'(t)dt$.

Example 39 Calculate
$$I = \int_{0}^{1} \sqrt{1-x^2} dx$$
.

We set $x = \sin t \Longrightarrow dx = \cos t.dt$,

$$\begin{aligned} & \textit{if } x = 0 \Longrightarrow t = 0, \\ & \textit{if } x = 1 \Longrightarrow t = \frac{\pi}{2}, \end{aligned}$$

then,
$$I = \int_{0}^{\frac{\pi}{2}} \sqrt{\cos^{2}(t)} \cos(t) dt = \int_{0}^{\frac{\pi}{2}} |\cos(t)| \cos(t) dt = \int_{0}^{\frac{\pi}{2}} \cos^{2}(t) dt$$
.

We have
$$cos(2t) = 2cos^2(t) - 1 \Longrightarrow cos^2(t) = \frac{cos(2t) + 1}{2}$$
,

hence
$$I = \int_{0}^{\frac{\pi}{2}} \cos^{2}(t)dt = \int_{0}^{\frac{\pi}{2}} \frac{\cos(2t) + 1}{2}dt = \frac{1}{2} \left[\frac{\sin(2t)}{2} + t \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{4}.$$

Example 40 Calculate
$$J = \int \frac{x}{\sqrt{x+1}} dx$$
.

We set
$$t = \sqrt{x+1} \Longrightarrow x = t^2 - 1 \Longrightarrow dx = 2t.dt$$
,

then
$$J = 2 \int (t^2 - 1)dt = 2(\frac{t^3}{3} - t) + C$$
, $C \in \mathbb{R}$,

hence
$$J = 2\left(\frac{\sqrt{(x+1)^3}}{3} - \sqrt{x+1}\right) + C$$
, $C \in \mathbb{R}$.

Example 41 We set $t = \ln x \Longrightarrow dt = \frac{1}{x} dx$,

$$I_1 = \int \frac{\ln x}{x} dx = \int t dt = \frac{t^2}{2} + C = \frac{\ln^2 x}{2} + C, \quad C \in \mathbb{R}.$$

$$I_2 = \int \frac{1}{x \ln x} dx = \int \frac{dt}{t} = \ln|t| + C = \ln|\ln x| + C, \quad C \in \mathbb{R}.$$

Example 42
$$K = \int \sin^2 x \cos^3 x dx = \int \sin^2 x (1 - \sin^2 x) \cos x dx$$

$$= \int (\sin^2 x - \sin^4 x) \cos x dx,$$

we set $t = \sin x \Longrightarrow dt = \cos x. dx$,

$$K = \int (t^2 - t^4)dt = \frac{t^3}{3} - \frac{t^5}{5} + C = \frac{\sin^3 x}{3} - \frac{\sin^5 x}{5} + C, \quad C \in \mathbb{R}.$$

1.3.3 Partial fraction decomposition

Example 43 Calculate
$$I = \int \frac{1}{x(x+1)(x+2)} dx$$
.

We decompose the fraction into partial fractions:

$$\begin{split} \frac{1}{x(x+1)(x+2)} &= \frac{A}{x} + \frac{B}{x+1} + \frac{C}{x+2} \\ &= \frac{A(x+1)(x+2) + Bx(x+2) + Cx(x+1)}{x(x+1)(x+2)} \\ &= \frac{(A+B+C)x^2 + (3A+2B+C)x + 2A}{x(x+1)(x+2)}, \end{split}$$

by identification, we obtain

$$\begin{cases} A+B+C &= 0 \\ 3A+2B+C &= 0 \\ 2A &= 1 \end{cases} \Longrightarrow \begin{cases} A &= \frac{1}{2}, \\ B &= -1, \\ C &= \frac{1}{2}, \end{cases}$$

$$then I = \int \frac{1}{x(x+1)(x+2)} dx = \int \left(\frac{1}{2}(\frac{1}{x}) - \frac{1}{x+1} + \frac{1}{2}(\frac{1}{x+2})\right) dx,$$

$$hence I = \frac{1}{2} \ln|x| - \ln|x+1| + \frac{1}{2} \ln|x+2| + C, \quad C \in \mathbb{R}.$$

Example 44 Calculate
$$I = \int \frac{1}{x(1+x^2)} dx$$

We decompose the fraction into partial fractions:

$$\frac{1}{x(1+x^2)} = \frac{A}{x} + \frac{Bx+C}{1+x^2} = \frac{A(1+x^2) + (Bx+C)x}{x(1+x^2)} = \frac{(A+B)x^2 + Cx + A}{x(1+x^2)},$$

by identification, we obtain

$$\begin{cases} A+B & = & 0 \\ C & = & 0 \\ A & = & 1 \end{cases} \implies \begin{cases} A & = & 1, \\ B & = & -1, \\ C & = & 0, \end{cases}$$

then
$$I = \int \frac{1}{x(1+x^2)} dx = \int \left(\frac{1}{x} - \frac{x}{1+x^2}\right) dx = \ln|x| - \frac{1}{2}\ln(1+x^2) + C,$$

 $C \in \mathbb{R}.$

Remark 45 1) If the fraction $\frac{P(x)}{Q(x)}$ Is such that the degree of P is less than the degree of Q (i.e. a proper fraction), we perform the decomposition of the fraction into partial fractions (if possible).

2) If the fraction $\frac{P(x)}{Q(x)}$ Is such that the degree of P is greater than or equal to the degree of Q, we first perform the Euclidean division, we obtain

$$\frac{P(x)}{Q(x)} = A(x) + \frac{R(x)}{Q(x)} \quad \text{such that the deg } R(x) \text{ is less than the deg } Q(x).$$

Then, we decompose the fraction $\frac{R(x)}{Q(x)}$ into partial fractions (if possible).

Example 46 Calculate
$$I = \int \frac{x^3}{x^2 - 1} dx$$
. $I = \int \left(x + \frac{x}{x^2 - 1} \right) dx = \frac{x^2}{2} + \frac{1}{2} \ln |x^2 - 1| + C$, $C \in \mathbb{R}$.

1.3.4 Antiderivatives of rational functions

1)
$$I = \int \frac{1}{x^2 + a^2} dx$$
, $a \neq 0$.

$$I = \int \frac{1}{a^2 (\frac{x^2}{a^2} + 1)} dx = \frac{1}{a^2} \int \frac{1}{(\frac{x}{a})^2 + 1} dx = \frac{1}{a} \arctan(\frac{x}{a}) + C, \quad C \in \mathbb{R}.$$

(We can make the change of variable $t = \frac{x}{a}$.)

2)
$$J = \int \frac{1}{x^2 - a^2} dx$$
, $a \neq 0$.
 $J = \int \frac{1}{(x+a)(x-a)} dx$.

We decompose the fraction into partial fractions:

$$\frac{1}{(x+a)(x-a)} = \frac{A}{x+a} + \frac{B}{x-a} = \frac{(A+B)x - Aa + Ba}{(x-a)(x+a)},$$

by identification, we obtain

$$\begin{cases} A+B &= 0 \\ -Aa+Ba &= 1 \end{cases} \Longrightarrow \begin{cases} A &= -\frac{1}{2a}, \\ B &= \frac{1}{2a}, \end{cases}$$

then

$$J = \int \frac{1}{(x+a)(x-a)} dx = -\frac{1}{2a} \int \frac{1}{x+a} dx + \frac{1}{2a} \int \frac{1}{x-a} dx,$$

= $-\frac{1}{2a} \ln|x+a| + \frac{1}{2a} \ln|x-a| + C, \quad C \in \mathbb{R}$
= $\frac{1}{2a} \ln\left|\frac{x-a}{x+a}\right| + C, \quad C \in \mathbb{R}.$

Calculation of integrals of the type: $I = \int \frac{mx + n}{ax^2 + bx + c} dx$, $a \neq 0$.

1) If
$$m=0$$
, then $I=\int \frac{n}{ax^2+bx+c}dx$

- if $ax^2 + bx + c = 0$ has two real roots, we factor, then we decompose the fraction into partial fractions.

- If $ax^2 + bx + c = 0$ has a double root, we factor, then we integrate.

- If $ax^2 + bx + c = 0$ has no real roots, we rewrite this polynomial in the form $X^2 + A^2$ ou $X^2 - A^2$.

Example 47 Calculate
$$I = \int \frac{1}{x^2 + 2x + 5} dx$$
.

$$I = \int \frac{1}{(x+1)^2 + 4} dx = \frac{1}{4} \int \frac{1}{(\frac{x+1}{2})^2 + 1} dx,$$

we set
$$t = \frac{x+1}{2} \Longrightarrow dt = \frac{1}{2}dx$$
,

then

$$\begin{split} I &= \frac{1}{2} \int \frac{1}{t^2 + 1} dt = \frac{1}{2} \arctan(t) + C, \quad C \in \mathbb{R}, \\ &= \frac{1}{2} \arctan(\frac{x + 1}{2}) + C, \quad C \in \mathbb{R}. \end{split}$$

2) If $m \neq 0$, we write the integral in the following form

$$\int \frac{mx+n}{ax^2+bx+c} dx = \int \frac{\frac{m}{2a}(2ax+b)+(n-\frac{mb}{2a})}{ax^2+bx+c} dx$$
$$= \frac{m}{2a} \int \frac{(2ax+b)}{ax^2+bx+c} dx + (n-\frac{mb}{2a}) \int \frac{1}{ax^2+bx+c} dx$$
$$= \frac{m}{2a} \ln |ax^2+bx+c| + (n-\frac{mb}{2a}) \int \frac{1}{ax^2+bx+c} dx.$$

Example 48 Calculate $I = \int \frac{x+1}{x^2+x+1} dx$.

$$\begin{split} I &= \frac{1}{2} \int \frac{2(x+1)}{x^2 + x + 1} dx = \frac{1}{2} \int \left(\frac{2x+1}{x^2 + x + 1} + \frac{1}{x^2 + x + 1} \right) dx \\ &= \frac{1}{2} \ln \left| x^2 + x + 1 \right| + \frac{1}{2} \int \frac{1}{x^2 + x + 1} dx. \end{split}$$

$$\int \frac{1}{x^2 + x + 1} dx = \int \frac{1}{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}} dx = \frac{4}{3} \int \frac{1}{\left(\frac{2x+1}{\sqrt{3}}\right)^2 + 1} dx$$
$$= \frac{2}{\sqrt{3}} \arctan\left(\frac{2x+1}{\sqrt{3}}\right) + C, \quad C \in \mathbb{R}.$$

(we can make the change of variable $t = \frac{2x+1}{\sqrt{3}}$).

Therefore,
$$I = \frac{1}{2} \ln \left| x^2 + x + 1 \right| + \frac{1}{\sqrt{3}} \arctan \left(\frac{2x+1}{\sqrt{3}} \right) + C$$
, $C \in \mathbb{R}$.

Calculation of integrals of the type : $\int R(\sin x, \cos x) dx$,

Such that R is a rational function.

On pose
$$t = \tan \frac{x}{2}$$
,

$$\frac{dt}{dx} = \frac{1}{2} \left(1 + \tan^2 \frac{x}{2} \right) \Longrightarrow dx = \frac{2dt}{1 + t^2},$$

$$\sin x = \sin 2(\frac{x}{2}) = 2\sin \frac{x}{2} \cdot \cos \frac{x}{2} = \frac{2\sin \frac{x}{2} \cdot \cos \frac{x}{2}}{\cos^2(\frac{x}{2}) + \sin^2(\frac{x}{2})} = \frac{2t}{1 + t^2}$$

thus,
$$\sin x = \frac{2t}{1+t^2}$$
.

$$\cos x = \cos 2(\frac{x}{2}) = \cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right) = \frac{\cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right)}{\cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right)} = \frac{1 - t^2}{1 + t^2},$$

therefore,
$$\cos x = \frac{1 - t^2}{1 + t^2}$$
.

Example 49 Calculate
$$I = \int \frac{1}{\sin x} dx$$
.

We set
$$t = \tan \frac{x}{2}$$
,

then,
$$dx = \frac{2dt}{1+t^2}$$
 and $\sin x = \frac{2t}{1+t^2}$.

$$I = \int \frac{1}{\frac{2t}{1+t^2}} \left(\frac{2dt}{1+t^2} \right) = \int \frac{dt}{t} = \ln|t| + C, \quad C \in \mathbb{R},$$

hence,
$$I = \ln \left| \tan \frac{x}{2} \right| + C$$
, $C \in \mathbb{R}$.

Example 50 Calculate
$$I = \int \frac{1}{1 + \sin x + \cos x} dx$$
.

We set
$$t = \tan \frac{x}{2}$$
,

then,
$$dx = \frac{2dt}{1+t^2}$$
, $\sin x = \frac{2t}{1+t^2}$ et $\cos x = \frac{1-t^2}{1+t^2}$.

$$I = \int \frac{1}{1 + \frac{2t}{1 + t^2} + \frac{1 - t^2}{1 + t^2}} \left(\frac{2dt}{1 + t^2}\right) = \int \frac{dt}{1 + t} = \ln|1 + t| + C, \quad C \in \mathbb{R},$$

hence,
$$I = \ln \left| 1 + \tan \frac{x}{2} \right| + C$$
, $C \in \mathbb{R}$.

Calculation of integrals of the type : $\int R(e^x)dx$.

such that R is a rational function.

We set
$$t = e^x$$
,

$$\frac{dt}{dx} = e^x = t \Longrightarrow dx = \frac{dt}{t}.$$

Example 51 Calculate
$$I = \int \frac{dx}{1 + e^x}$$
.

We set
$$t = e^x \Longrightarrow dx = \frac{dt}{t}$$
,

$$I = \int \frac{dt}{t(1+t)} = \int \left(\frac{1}{t} - \frac{1}{1+t}\right) dt,$$

$$I = \ln|t| - \ln|1 + t| + C, \quad C \in \mathbb{R},$$

then,
$$I = \ln |e^x| - \ln |1 + e^x| + C$$
, $C \in \mathbb{R}$,

hence,
$$I = x - \ln(1 + e^x) + C$$
, $C \in \mathbb{R}$.

1.4 Exercises

Exercise 52 1) Calculate $I = \int \frac{t}{t^2 + 2t - 3} dt$.

2) Deduce
$$J = \int \frac{e^x}{e^x - 3e^{-x} + 2} dx$$
.

Solution: 1)
$$I = \int \frac{t}{t^2 + 2t - 3} dt = \int \frac{t}{(t+3)(t-1)} dt$$
.

We decompose the fraction into partial fractions:

$$\frac{t}{(t+3)(t-1)} = \frac{A}{t+3} + \frac{B}{t-1},$$

we obtain

$$I=\int\left(\frac{3}{4(t+3)}+\frac{1}{4(t-1)}\right)dt,$$

then,
$$I = \frac{3}{4} \ln|t+3| + \frac{1}{4} \ln|t-1| + C$$
, $C \in \mathbb{R}$.

2)
$$J = \int \frac{e^x}{e^x - 3e^{-x} + 2} dx$$
.

We set $t = e^x$

$$\frac{dt}{dx} = e^x = t \Longrightarrow dx = \frac{dt}{t},$$

$$J = \int \frac{t}{t - 3t^{-1} + 2} \frac{dt}{t} = \int \frac{t}{t^2 + 2t - 3} dt = I,$$

then,
$$J = \frac{3}{4} \ln|t+3| + \frac{1}{4} \ln|t-1| + C$$
, $C \in \mathbb{R}$,

hence,
$$J = \frac{3}{4} \ln(e^x + 3) + \frac{1}{4} \ln|e^x - 1| + C$$
, $C \in \mathbb{R}$.

Exercise 53 1) Calculate the integral $I = \int \frac{dx}{x(x^3+1)}$.

2) Deduce the integral
$$J = \int \frac{x^2 \ln x}{(x^3 + 1)^2} dx$$
.

Solution:
1)
$$I = \int \frac{dx}{x(x^3+1)}$$
.

We decompose the fraction into partial fractions:

1.4. EXERCISES

19

$$\begin{split} \frac{1}{x(x^3+1)} &= \frac{1}{x(x+1)(x^2-x+1)} = \frac{A}{x} + \frac{B}{x+1} + \frac{Cx+D}{x^2-x+1} \\ &= \frac{A(x^3+1) + Bx(x^2-x+1) + (Cx+D)x(x+1)}{x(x+1)(x^2-x+1)} \\ &= \frac{(A+B+C)x^3 + (-B+C+D)x^2 + (B+D)x + A}{x(x^3+1)}, \end{split}$$

by identification, we obtain

$$\begin{cases} A+B+C &= 0 \\ -B+C+D &= 0 \\ B+D &= 0 \\ A &= 1 \end{cases} \iff \begin{cases} A &= 1, \\ B &= -\frac{1}{3}, \\ C &= -\frac{2}{3}, \\ D &= \frac{1}{3}, \end{cases}$$

then

$$\begin{split} I &= \int \frac{dx}{x(x^3+1)} = \int \left(\frac{1}{x} - \frac{1}{3}\frac{1}{x+1} - \frac{1}{3}\frac{2x-1}{x^2-x+1}\right) dx, \\ I &= \int \frac{1}{x} dx - \frac{1}{3} \int \frac{1}{x+1} dx - \frac{1}{3} \int \frac{2x-1}{x^2-x+1} dx, \\ I &= \ln|x| - \frac{1}{3} \ln|x+1| - \frac{1}{3} \ln|x^2-x+1| + C, \ \ C \in \mathbb{R}, \\ \text{hence, } I &= \ln|x| - \frac{1}{3} \ln|x^3+1| + C, \ \ C \in \mathbb{R}. \end{split}$$

2) We deduce the integral
$$J = \int \frac{x^2 \ln x}{(x^3 + 1)^2} dx$$
.

We perform integration by parts, we set

$$\begin{cases} U = \ln x \\ V' = \frac{x^2}{(x^3+1)^2} \implies \begin{cases} U' = \frac{1}{x}, \\ V = -\frac{1}{3} \frac{1}{x^3+1}, \end{cases}$$

then

$$J = \int \frac{x^2 \ln x}{(x^3 + 1)^2} dx = -\frac{\ln x}{3(x^3 + 1)} + \frac{1}{3} \int \frac{1}{x(x^3 + 1)} dx,$$

$$J = -\frac{\ln x}{3(x^3 + 1)} + \frac{1}{3}I,$$
hence
$$J = -\frac{\ln x}{3(x^3 + 1)} + \frac{1}{3}\ln|x| - \frac{1}{9}\ln|x^3 + 1| + C, \ C \in \mathbb{R}.$$

Exercise 54 1) Calculate the integral $I = \int \frac{2}{(1+t)(1+t^2)} dt$.

2) Deduce the integral
$$J = \int \frac{\sin x}{1 + \sin x - \cos x} dx$$
.

Solution:
1)
$$I = \int \frac{2}{(1+t)(1+t^2)} dt$$
.

We decompose the fraction into partial fractions:

$$\frac{2}{(1+t)(1+t^2)} = \frac{A}{1+t} + \frac{Bt+C}{1+t^2} = \frac{A(1+t^2) + (Bt+C)(1+t)}{(1+t)(1+t^2)}$$
$$= \frac{(A+B)t^2 + (B+C)t + A + C}{(1+t)(1+t^2)},$$

by identification, we obtain

$$\left\{ \begin{array}{lll} A+B & = & 0 \\ B+C & = & 0 \\ A+C & = & 2 \end{array} \right. \iff \left\{ \begin{array}{lll} A & = & 1, \\ B & = & -1, \\ C & = & 1, \end{array} \right.$$

then

$$\begin{split} I &= \int \frac{2}{(1+t)(1+t^2)} dt = \int \left(\frac{1}{1+t} + \frac{-t+1}{1+t^2}\right) dt, \\ I &= \int \left(\frac{1}{1+t} - \frac{t}{1+t^2} + \frac{1}{1+t^2}\right) dt = \int \frac{1}{1+t} dt - \int \frac{t}{1+t^2} dt + \int \frac{1}{1+t^2} dt, \\ \text{hence, } I &= \ln|1+t| - \frac{1}{2} \ln\left(1+t^2\right) + \arctan t + C, \;\; C \in \mathbb{R}. \end{split}$$

2) We deduce the integral
$$J = \int \frac{\sin x}{1 + \sin x - \cos x} dx$$
.

We make a change of variable, we set $t = \tan \frac{x}{2}$,

with this change of variable, we obtain

$$\sin x = \frac{2t}{1+t^2}$$
, $\cos x = \frac{1-t^2}{1+t^2}$ and $dx = \frac{2dt}{1+t^2}$,

then

$$J = \int \frac{\frac{2t}{1+t^2}}{1+\frac{2t}{1+t^2} - \frac{1-t^2}{1+t^2}} \frac{\frac{2dt}{1+t^2}}{1+t^2} = \int \frac{2}{(1+t)(1+t^2)} dt = I,$$

hence
$$J = \ln|1 + t| - \frac{1}{2}\ln(1 + t^2) + \arctan t + C, C \in \mathbb{R},$$

1.4. EXERCISES

thus
$$J = \ln \left| 1 + \tan \frac{x}{2} \right| - \frac{1}{2} \ln \left(1 + \tan^2 \left(\frac{x}{2} \right) \right) + \frac{x}{2} + C, \ C \in \mathbb{R}.$$

21

Exercise 55 1) Calculate $I = \int_0^1 \ln(x+t)dx$, $t \in]0,+\infty[$.

2) Deduce
$$J_n = \int_0^1 \ln[(x+1)(x+2)....(x+n)]dx$$
, $n \in \mathbb{N}^*$.

3) Calculate
$$\lim_{n \to +\infty} \frac{J_n}{(n+1)^2}$$
.

Solution:

1)
$$I = \int_0^1 \ln(x+t)dx, \quad t \in]0, +\infty[.$$

We perform integration by parts, we set

$$\left\{ \begin{array}{lcl} U & = & \ln(x+t) \\ V' & = & 1 \end{array} \right. \Longrightarrow \left\{ \begin{array}{lcl} U' & = & \frac{1}{x+t}, \\ V & = & x, \end{array} \right.$$

then

$$J = [x \ln(x+t)]_{x=0}^{x=1} - \int_0^1 \frac{x}{x+t} dx = \ln(1+t) - \int_0^1 \frac{x+t-t}{x+t} dx$$

$$= \ln(1+t) - \int_0^1 \left(1 - \frac{t}{x+t}\right) dx = \ln(1+t) - [x-t \ln(x+t)]_{x=0}^{x=1}$$

$$= \ln(1+t) - 1 + t \ln(1+t) - t \ln t,$$
hence, $J = (1+t) \ln(1+t) - t \ln t - 1$.

2) We deduce
$$J_n = \int_0^1 \ln[(x+1)(x+2)....(x+n)]dx$$
, $n \in \mathbb{N}^*$.

$$J_n = \int_0^1 \ln[(x+1)(x+2)....(x+n)]dx$$
$$= \int_0^1 \ln(x+1)dx + \int_0^1 \ln(x+2)dx + + \int_0^1 \ln(x+n)dx.$$

According to the first question, we obtain

$$J_n = (2 \ln 2 - 1) + (3 \ln 3 - 2 \ln 2 - 1) + \dots + ((n+1) \ln(n+1) - n \ln n - 1),$$

then $J_n = (n+1) \ln(n+1) - n.$

3) we calculate
$$\lim_{n \to +\infty} \frac{J_n}{(n+1)^2}$$

$$\lim_{n \to +\infty} \frac{J_n}{(n+1)^2} = \lim_{n \to +\infty} \frac{(n+1)\ln(n+1) - n}{(n+1)^2},$$
$$\lim_{n \to +\infty} \frac{J_n}{(n+1)^2} = \lim_{n \to +\infty} \left(\frac{\ln(n+1)}{(n+1)} - \frac{n}{(n+1)^2}\right) = 0.$$

Chapter 2

Differential equations of the first and second order

2.1 Differential equations of the first order

Definition 56 A differential equation of the first order is defined as any equation of the form

$$y' = f(x, y) \tag{I}$$

where $f: D \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ is a function and y is a function of the variable x.

The solution of the differential equation:

Let I be an interval of \mathbb{R} . The function $y:I\longrightarrow\mathbb{R}$ is a solution of the differential equation (I) if it satisfies the following conditions:

- 1) The graph of $y, G_y \subset D$, i.e. $\forall x \in I, (x, y(x)) \in D$.
- 2) y is a derivable function and we have $\forall x \in I, y'(x) = f(x, y(x))$.

In this chapter, we will study five types of first-order differential equations.

2.1.1 Differential equations with separable variables

Definition 57 Differential equations with separable variables are written in the following form:

$$y' = f(x).g(y) \tag{1}$$

where $f:I\longrightarrow \mathbb{R}$ and $g:J\longrightarrow \mathbb{R}$ are two continuous functions with I and J two intervals of \mathbb{R} .

24CHAPTER 2. DIFFERENTIAL EQUATIONS OF THE FIRST AND SECOND ORDER

Solving method:

We have
$$y' = \frac{dy}{dx} = f(x)g(y)$$
,

then,
$$\frac{dy}{g(y)} = f(x)dx$$
,

hence,
$$\int \frac{dy}{g(y)} = \int f(x)dx$$
, with $g(y) \neq 0$.

We integrate to find $y = \varphi(x)$ which is the solution of the differential equation (1).

Exercise 58 Solve the following differential equations:

1)
$$(x+1)y' + y = 0$$
.

$$2) y' \sin x - y \cos x = 0.$$

3)
$$y' + \frac{xy}{1 - x^2} = 0$$
, satisfying $y(0) = 1$.

Solution:

1)
$$(x+1)y' + y = 0....(E)$$
.

Remark: y = 0 is a solution of (E).

If
$$y \neq 0$$
, $(x+1)y' + y = 0 \iff y' = -\frac{1}{x+1}y$

$$\iff \frac{dy}{dx} = -\frac{1}{x+1}y \iff \frac{dy}{y} = -\frac{1}{x+1}dx,$$

then

$$\int \frac{dy}{y} = -\int \frac{1}{x+1} dx \Longrightarrow \ln|y| = -\ln|x+1| + C = \ln\frac{1}{|x+1|} + C, \quad C \in \mathbb{R},$$

hence,
$$|y| = \frac{1}{|x+1|} e^C \Longrightarrow y = \pm e^C \frac{1}{x+1} \Longrightarrow y = \frac{K}{x+1}, \ K \in \mathbb{R}^*.$$

Since y = 0 is a solution of (E), then the general solution of (E) is

$$y = \frac{K}{x+1}, \ K \in \mathbb{R}.$$

2)
$$y' \sin x - y \cos x = 0....(F)$$
.

Remark: y = 0 is a solution of (F).

If
$$y \neq 0$$
, $y' \sin x - y \cos x = 0 \iff y' = \frac{\cos x}{\sin x} y$

$$\Longleftrightarrow \frac{dy}{dx} = \frac{\cos x}{\sin x} y \Longleftrightarrow \frac{dy}{y} = \frac{\cos x}{\sin x} dx,$$

then

$$\int \frac{dy}{y} = \int \frac{\cos x}{\sin x} dx \Longrightarrow \ln|y| = \ln|\sin x| + C, \quad C \in \mathbb{R},$$

hence, $|y| = |\sin x| e^C \Longrightarrow y = \pm e^C \sin x \Longrightarrow y = K \sin x, K \in \mathbb{R}^*.$

Since y = 0 is a solution of (F), then the general solution of (F) is $y = K \sin x, K \in \mathbb{R}$.

3)
$$y' + \frac{xy}{1 - x^2} = 0....(G)$$
.

Remark: y = 0 is a solution of (G).

If
$$y \neq 0$$
, $y' + \frac{xy}{1 - x^2} = 0 \iff y' = -\frac{x}{1 - x^2}y$

$$\Longleftrightarrow \frac{dy}{dx} = -\frac{x}{1-x^2}y \Longleftrightarrow \frac{dy}{y} = \frac{x}{x^2-1}dx,$$

then

$$\int \frac{dy}{y} = \int \frac{x}{x^2 - 1} dx \Longrightarrow \ln|y| = \frac{1}{2} \ln|x^2 - 1| + C, \quad C \in \mathbb{R},$$

hence,
$$|y| = \sqrt{|x^2 - 1|}e^C \Longrightarrow y = \pm e^C \sqrt{|x^2 - 1|} \Longrightarrow y = K\sqrt{|x^2 - 1|}, K \in \mathbb{R}^*.$$

Since y = 0 is a solution of (G), then the general solution of (G) is

$$y = K\sqrt{|x^2 - 1|}, \ K \in \mathbb{R}.$$

We look for the solution that satisfies the condition y(0) = 1.

$$y(0) = 1 \iff K = 1,$$

thus,
$$y = \sqrt{|x^2 - 1|}$$
.

2.1.2 Homogeneous differential equations

Definition 59 The homogeneous differential equations are written in the following form:

$$y' = f\left(\frac{y}{x}\right) \qquad (2)$$

where $f: I \longrightarrow \mathbb{R}$ is a continuous function.

26CHAPTER 2. DIFFERENTIAL EQUATIONS OF THE FIRST AND SECOND ORDER

Solving method:

$$y' = f\left(\frac{y}{x}\right),\,$$

we set $t = \frac{y}{x} \iff y = tx$, then y' = t'x + t.

We substitute into the equation (2):

$$t'x + t = f(t) \iff t'x = f(t) - t \iff t' = (f(t) - t)\frac{1}{x}$$

thus, we obtain a differential equation with separable variables,

$$\frac{dt}{dx} = (f(t) - t)\frac{1}{x}.$$

If
$$f(t) - t \neq 0$$
, then we have $\int \frac{dt}{f(t) - t} = \int \frac{1}{x} dx = \ln|x| + C$,

by integrating, we obtain $t = \varphi(x)$ and then, $y = x\varphi(x)$ is the solution of the equation (2).

Singular solutions of the homogeneous equation:

If f(t) - t = 0, then we have:

let t_0 be a root of this equation, then $t = t_0$ is a solution to the differential equation

$$t'x = f(t) - t.$$

Indeed, $f(t_0) - t_0 = 0$ and since t_0 is a constant, then $t' = (t_0)' = 0$,

hence, $y = xt_0$ is a solution of the equation (2).

These solutions are called the singular solutions of the homogeneous equation.

Exercise 60 Solve the following differential equations:

1)
$$x (y' - \frac{y}{x}) - y + x = 0.$$

2)
$$y'(2\sqrt{xy} - x) + y = 0$$
, on $[0, +\infty[$ satisfying $y(1) = 1$.

Solution: 1)
$$x (y' - \frac{y}{x}) - y + x = 0....(E)$$
.

$$x(y' - \frac{y}{x}) - y + x = 0 \iff y' = 2\frac{y}{x} - 1.$$

We set
$$t = \frac{y}{x} \iff y = tx$$
, then $y' = t'x + t$,

$$t'x+t=2\frac{y}{x}-1=2t-1\Longrightarrow t'x=t-1,$$

thus $t' = \frac{1}{x}(t-1)$: It is a differential equation with separable variables,

so,
$$\frac{dt}{dx} = \frac{1}{x}(t-1) \Longleftrightarrow \frac{dt}{t-1} = \frac{dx}{x}$$
 if $t-1 \neq 0$,

then,
$$\int \frac{dt}{t-1} = \int \frac{dx}{x} \Longrightarrow \ln|t-1| = \ln|x| + C, \quad C \in \mathbb{R},$$

thus,
$$|t-1| = |x|e^C \Longrightarrow t-1 = \pm e^C x \Longrightarrow t = Kx+1, K \in \mathbb{R}^*$$
.

Therefore, $y = tx = Kx^2 + x$, $K \in \mathbb{R}^*$.

The singular solutions of (E):

If
$$t - 1 = 0 \Longrightarrow t = 1 \Longrightarrow \frac{y}{x} = 1$$
,

then y = x: It is the singular solution of the equation (E).

2)
$$y'(2\sqrt{xy} - x) + y = 0$$
, on $]0, +\infty[$ satisfying $y(1) = 1....(F)$.

$$y'(2\sqrt{xy} - x) + y = 0 \iff y'\left(2\sqrt{\frac{y}{x}} - 1\right) + \frac{y}{x} = 0$$
$$\iff y' = -\frac{\frac{y}{x}}{2\sqrt{\frac{y}{x}} - 1} \text{ with } 2\sqrt{\frac{y}{x}} - 1 \neq 0,$$

we set
$$t = \frac{y}{x} \iff y = tx$$
, then $y' = t'x + t$,

$$t'x+t=-\frac{\frac{y}{x}}{2\sqrt{\frac{y}{x}}-1}=\frac{-t}{2\sqrt{t}-1}\Longrightarrow t'x=\frac{-2t\sqrt{t}}{2\sqrt{t}-1},$$

thus, $t' = \frac{1}{x} \left(\frac{-2t\sqrt{t}}{2\sqrt{t}-1} \right)$: t is a differential equation with separable variables,

then,
$$\frac{dt}{dx} = \frac{1}{x} \left(\frac{-2t\sqrt{t}}{2\sqrt{t} - 1} \right) \Longleftrightarrow \left(\frac{2\sqrt{t} - 1}{-2t\sqrt{t}} \right) dt = \frac{dx}{x}$$
 if $t \neq 0$,

hence

$$\int \left(\frac{2\sqrt{t}-1}{-2t\sqrt{t}}\right) dt = \int \frac{dx}{x} \Longrightarrow \int \left(\frac{-1}{t} + \frac{1}{2t\sqrt{t}}\right) dt = \int \frac{dx}{x}$$

$$\Longrightarrow -\ln t - \frac{1}{\sqrt{t}} = \ln x + C, \quad C \in \mathbb{R}$$

$$\Longrightarrow \ln(xt) = -\frac{1}{\sqrt{t}} - C \Longrightarrow xt = e^{-\frac{1}{\sqrt{t}} - C},$$

therefore, $y = e^{-\sqrt{\frac{x}{y}} - C}$.

The singular solution of the equation (F):

if $t = 0 \Longrightarrow y = 0$: It is the singular solution of the equation (F).

We seek the solution y that satisfies the condition y(1) = 1,

$$y(1) = 1 \iff e^{-1-C} = 1 \iff C = -1,$$

then,
$$y = e^{-\sqrt{\frac{x}{y}}+1}$$
.

2.1.3 Linear differential equations of the first order

Definition 61 The linear differential equations of the first order are written in the following form:

$$y' + a(x)y = b(x) (E)$$

where $a: I \longrightarrow \mathbb{R}$ and $b: I \longrightarrow \mathbb{R}$ are two continuous functions.

Solving method:

The general solution of $(E): y_G = y_p + y$,

where y_p is a particular solution of (E),

and y is the general solution of the equation without the right-hand side (E_0) .

 $(E_0): y' + a(x)y = 0:$ it is a differential equation with separable variables.

If the particular solution y_p is not obvious, we apply the method of variation of the constant, which involves replacing the constant K in the solution y of the equation without the right-hand side, by the function K(x), then, we search for K(x) by substituting into the equation (E).

Exercise 62 Solve the following differential equations:

1)
$$y' + xy = x$$
.

$$2) y' - \frac{y}{x} = \ln x.$$

3)
$$x(x^2+1)y'-2y=x^3(x-1)e^{-x}$$
.

Solution:

1)
$$y' + xy = x....(E)$$
.

The general solution of $(E): y_G = y_p + y$,

where y_p is a particular solution of (E),

and y is the general solution of the equation without the right-hand side:

$$(E_0): y' + xy = 0.$$

We notice that $y_p = 1$ is a particular solution of (E).

We now seek the general solution of the equation without the right-hand side:

 $(E_0): y' + xy = 0:$ it is a differential equation with separable variables.

We notice that y = 0 is a solution of (E_0) .

If
$$y \neq 0$$
, $y' + xy = 0 \iff y' = -xy$

$$\iff \frac{dy}{dx} = -xy \iff \frac{dy}{y} = -xdx,$$

then,
$$\int \frac{dy}{y} = -\int x dx \Longrightarrow \ln|y| = -\frac{x^2}{2} + C$$
, $C \in \mathbb{R}$

$$\implies |y| = e^{-\frac{x^2}{2}}e^C \implies y = \pm e^C e^{-\frac{x^2}{2}}$$

hence,
$$y = Ke^{-\frac{x^2}{2}}, K \in \mathbb{R}^*.$$

Since y = 0 is a solution de (E_0) , then the solution of (E_0) is

$$y = Ke^{-\frac{x^2}{2}}, K \in \mathbb{R}.$$

Therefore the general solution of (E) is given by

$$y_G = y_p + y = 1 + Ke^{-\frac{x^2}{2}}, \quad K \in \mathbb{R}.$$

2)
$$y' - \frac{y}{x} = \ln x...(F)$$
.

The general solution of (F) is $: y_G = y_p + y$,

where y_p is a particular solution of (F),

and y is the general solution of the equation without the right-hand side, $(F_0): y' - \frac{y}{x} = 0$.

$$(F_0): y' - \frac{y}{x} = 0$$

Since the particular solution y_p of (F) is not obvious, we first look for the general solution of the equation without the right-hand side:

 $(F_0): y'-\frac{y}{x}=0:$ it is a differential equation with separable variables.

We notice that y = 0 is a solution of (F_0) .

If
$$y \neq 0$$
, $y' - \frac{y}{x} = 0 \iff y' = \frac{y}{x}$

$$\iff \frac{dy}{dx} = \frac{y}{x} \iff \frac{dy}{y} = \frac{dx}{x},$$

then,
$$\int \frac{dy}{y} = \int \frac{dx}{x} \Longrightarrow \ln|y| = \ln|x| + C$$
, $C \in \mathbb{R}$,

hence,
$$|y| = |x| e^C \Longrightarrow y = \pm e^C x \Longrightarrow y = Kx, K \in \mathbb{R}^*.$$

Since y = 0 is a solution of (F_0) , then the general solution of (F_0) is $y = Kx, K \in \mathbb{R}$.

To find the particular solution, we apply the method of variation of the constant (MVC). This method involves replacing the constant K with a function K(x).

We set $y_G = K(x)x$ which is the general solution of (F),

then,
$$y'_{G} = K'(x)x + K(x)$$
.

We replace y_G and y'_G in the equation (F) to obtain K'(x):

$$K'(x)x + K(x) - \frac{K(x)x}{x} = \ln x \Longrightarrow K'(x) = \frac{\ln x}{x},$$

then,
$$K(x) = \int \frac{\ln x}{x} dx$$
.

We set
$$U = \ln x \Longrightarrow dU = \frac{1}{x} dx$$
,

hence,
$$K(x) = \int \frac{\ln x}{x} dx = \int U dU = \frac{U^2}{2} + C = \frac{(\ln x)^2}{2} + C, \quad C \in \mathbb{R},$$

thus,
$$y_G = K(x)x = \frac{(\ln x)^2}{2}x + Cx$$
.

3)
$$x(x^2+1)y'-2y=x^3(x-1)e^{-x}....(G)$$
.

Since the particular solution y_p of (G) is not obvious, we first look for the general solution of the equation without the right-hand side:

 $(G_0): x(x^2+1)y'-2y=0:$ it is a differential equation with separable variables.

We notice that y = 0 is a solution of (G_0)

If
$$y \neq 0$$
, $x(x^2 + 1)y' - 2y = 0 \iff y' = \frac{2}{x(x^2 + 1)}y$

$$\iff \frac{dy}{dx} = \frac{2}{x(x^2+1)}y \iff \frac{dy}{y} = \frac{2}{x(x^2+1)}dx.$$

By decomposing the fraction into partial fractions, we obtain

$$\int \frac{dy}{y} = \int \frac{2}{x(x^2 + 1)} dx = \int \left(\frac{2}{x} - \frac{2x}{x^2 + 1}\right) dx$$

$$\implies \ln|y| = 2\ln|x| - \ln(x^2 + 1) + C = \ln\frac{x^2}{x^2 + 1} + C, \quad C \in \mathbb{R},$$

hence,
$$y = \frac{Kx^2}{x^2 + 1}$$
, $K \in \mathbb{R}$.

To find the particular solution, we apply the method of variation of the constant (MVC). This method involves replacing the constant K with a function K(x).

We set
$$y_G = \frac{K(x)x^2}{x^2+1}$$
,
 $K'(x)x^2(x^2+1) + 2xK(x^2+1)$

then,
$$y'_G = \frac{K'(x)x^2(x^2+1) + 2xK(x)}{(x^2+1)^2}$$
.

We replace y_G and y'_G in the equation (G) to obtain K'(x):

$$x(x^2+1)\frac{K'(x)x^2(x^2+1)+2xK(x)}{(x^2+1)^2}-2\frac{K(x)x^2}{x^2+1}=x^3(x-1)e^{-x},$$

then,
$$K'(x) = (x-1)e^{-x} \Longrightarrow K(x) = \int (x-1)e^{-x} dx$$
.

By performing integration by parts, we obtain

$$K(x) = -xe^{-x} + C, \quad C \in \mathbb{R},$$

therefore,
$$y_G = \frac{K(x)x^2}{x^2 + 1} = \frac{(-xe^{-x} + C)x^2}{x^2 + 1} = \frac{-x^3e^{-x}}{x^2 + 1} + \frac{Cx^2}{x^2 + 1}.$$

Exercise 63 1) Calculate the following integral:

$$I = \int \frac{dx}{(1+x^2)(1+x)}.$$

2) Deduce the following 'integral:

$$J = \int \frac{\arctan x}{(1+x)^2} dx.$$

3) Solve the following differential equation, specifying its type :

$$(E): (x+1)y' + y = \frac{\arctan x}{(1+x)^2}.$$

Solution:

1) Let the integral

$$I = \int \frac{dx}{(1+x^2)(1+x)},$$

decomposing the fraction into partial fractions, we obtain:

$$I = \int \frac{dx}{(1+x^2)(1+x)} = \int \left(\frac{\frac{1}{2}}{1+x} + \frac{-\frac{1}{2}x + \frac{1}{2}}{1+x^2}\right) dx$$
$$= \frac{1}{2}\ln|1+x| - \frac{1}{4}\ln(1+x^2) + \frac{1}{2}\arctan x + C, \quad C \in \mathbb{R}.$$

32CHAPTER 2. DIFFERENTIAL EQUATIONS OF THE FIRST AND SECOND ORDER

2) We deduce the integral

$$J = \int \frac{\arctan x}{(1+x)^2} dx.$$

By performing integration by parts, we obtain

$$J = \int \frac{\arctan x}{(1+x)^2} dx = -\frac{\arctan x}{1+x} + \int \frac{dx}{(1+x^2)(1+x)} = -\frac{\arctan x}{1+x} + I,$$

ther

$$J = -\frac{\arctan x}{1+x} + \frac{1}{2}\ln|1+x| - \frac{1}{4}\ln(1+x^2) + \frac{1}{2}\arctan x + C, \quad C \in \mathbb{R}.$$

3) Let the following differential equation:

(E):
$$(x+1)y' + y = \frac{\arctan x}{(1+x)^2}$$
,

it is a linear differential equation of the first order, which we solve using the method of variation of the constant. We find

$$y = \frac{K(x)}{1+x}$$
 with $K(x) = J$,

hence

$$y = -\frac{\arctan x}{(1+x)^2} + \frac{1}{2} \frac{\ln|1+x|}{1+x} - \frac{1}{4} \frac{\ln(1+x^2)}{1+x} + \frac{1}{2} \frac{\arctan x}{1+x} + \frac{C}{1+x}, \ C \in \mathbb{R}.$$

2.1.4 Bernoulli differential equations

 $\textbf{Definition 64} \ \textit{Bernoulli differential equations are written in the following form} :$

$$y' + a(x)y = b(x)y^k$$
, (E) $k \in \mathbb{R} \setminus \{0, 1\}$,

where $a: I \longrightarrow \mathbb{R}$ and $b: I \longrightarrow \mathbb{R}$ are two continuous functions.

Solving method:

We check if y = 0 is a solution of the equation (E).

If $y \neq 0$, we divide the equation (E) by y^k , we obtain

$$y'y^{-k} + a(x)y^{1-k} = b(x)$$
 (E').

We make the following variable change:

$$Z = y^{1-k} \Longrightarrow Z' = (1-k)y'y^{-k},$$

then, we substitute into (E') to obtain

$$\frac{Z'}{1-k} + a(x)Z = b(x)$$
: it is a linear differential equation.

If Z is a solution of this equation, then $y=Z^{\frac{1}{1-k}}$ is the solution of the equation (E).

Exercise 65 Solve the following differential equations:

$$1) xy' + y = y^2 \ln x.$$

2)
$$(1-x^3)y' + 3x^2y = -y^2$$

Solution:

1)
$$xy' + y = y^2 \ln x \dots (E)$$
.

Remark: y = 0 is a solution of (E).

If $y \neq 0$, we divide the equation (E) by y^2 , we obtain

$$xy'y^{-2} + y^{-1} = \ln x \dots (E').$$

We set
$$Z = y^{-1}$$
, then $Z' = -y'y^{-2}$.

We substitute into the equation (E'), we find

$$-xZ' + Z = \ln x...(E_{\ell})$$
: it is a linear différential equation of order 1.

We solve this equation using the method of variation of the constant (see exercise 3), and we obtain

$$Z = K(x)x = (\frac{1}{x}\ln x + \frac{1}{x} + C)x = \ln x + 1 + Cx, \quad C \in \mathbb{R},$$

then,
$$y = \frac{1}{Z} = \frac{1}{\ln x + 1 + Cx}$$
.

2)
$$(1-x^3)y' + 3x^2y = -y^2.....(F)$$
.

Remark: y = 0 is a solution of (F).

If $y \neq 0$, we divide the equation (F) by y^2 , we obtain

$$(1-x^3)y'y^{-2} + 3x^2y^{-1} = -1.....(F').$$

We set
$$Z = y^{-1}$$
, then $Z' = -y'y^{-2}$.

We substitute into the equation (F'), we find

$$-(1-x^3)Z'+3x^2Z=-1...(F_\ell)$$
 : it is a linear differential equation of order 1.

34CHAPTER 2. DIFFERENTIAL EQUATIONS OF THE FIRST AND SECOND ORDER

We solve this equation using the method of variation of the constant (see exercise 3), and we obtain

$$Z = \frac{K(x)}{1 - x^3} = \frac{x + C}{1 - x^3}, \quad C \in \mathbb{R},$$

therefore,
$$y = \frac{1}{Z} = \frac{1 - x^3}{x + C}$$
.

2.1.5 Riccati differential equations

Definition 66 Riccati differential equations are written in the following form:

$$y' + a(x)y = b(x)y^2 + c(x)$$
 (E).

where a, b and c are continuous functions on $I \subset \mathbb{R}$.

Solving method:

Let y_0 be a particular solution of (E).

By using the change of variable $u = y - y_0$, we transform the equation (E) into the form of a Bernoulli equation with k = 2:

$$u' + A(x)u = b(x)u^2.$$

Exercise 67 1) Let the differential equation:

$$2y'\cos x - 2y\sin x = y^2.....(1).$$

- a) Specify the type of this equation.
- b) Find the general solution of (1).
- 2) Let the differential equation (**Riccati equation**) defined by:

$$2y'\cos x = y^2 + 2\cos^2 x - \sin^2 x \dots (2)$$

- c) Check that. $y_0 = \sin x$ is a particular solution of (2).
- d) By using the change of variable $u = y y_0$, rewrite equation (2) in the form of (1).

Then, deduce the general solution of (2).

Solution:

1) Let the differential equation:

$$2y'\cos x - 2y\sin x = y^2....(1)$$

a) It is a Bernoulli differential equation with. k=2.

b) The general solution of (1):

Remark: y = 0 is a solution of (1).

If $y \neq 0$, we divide the equation (1) by y^2 , we obtain

$$2y'y^{-2}\cos x - 2y^{-1}\sin x = 1....(1').$$

We set
$$Z = y^{-1}$$
, then $Z' = -y'y^{-2}$.

We substitute into the equation (1'), we find

 $-2Z'\cos x - 2Z\sin x = 1...(E_\ell)$: it is a linear differential equation of order 1.

We solve this equation using the method of variation of the constant (see exercise 3), and we obtain

$$Z = K(x)\cos x = \left(-\frac{1}{2}\tan x + C\right)\cos x = -\frac{1}{2}\sin x + C\cos x, \quad C \in \mathbb{R},$$

therefore,
$$y = \frac{1}{Z} = \frac{2}{-\sin x + C\cos x}$$
.

2) Let the differential equation (Riccati equation) defined by:

$$2y'\cos x = y^2 + 2\cos^2 x - \sin^2 x \dots (2).$$

c) We check that $y_0 = \sin x$ is a particular solution of (2).

$$y_0 = \sin x \Longrightarrow y_0' = \cos x,$$

We substitute into the equation (2):

$$2y_0' \cos x = y_0^2 + 2\cos^2 x - \sin^2 x \iff 2\cos^2 x = 2\cos^2 x$$

then, $y_0 = \sin x$ is a particular solution of (2).

d) We set $u = y - y_0$ to rewrite equation (2) in the form of (1).

$$u = y - y_0 \Longrightarrow y = u + y_0 = u + \sin x \Longrightarrow y' = u' + \cos x.$$

We substitute into the equation (2):

$$2(u' + \cos x)\cos x = (u + \sin x)^2 + 2\cos^2 x - \sin^2 x,$$

then,
$$2u'\cos x - 2u\sin x = u^2$$
: it is the equation (1).

Therefore, the general solution of this equation is given, according to question b), by

$$u = \frac{2}{-\sin x + C\cos x}, \quad C \in \mathbb{R},$$

thus,
$$y = u + \sin x = \frac{2}{-\sin x + C\cos x} + \sin x$$
 is the general solution of (2).

2.2 Linear differential equations of second order

2.2.1 Linear differential equations of second order with constant coefficients

Definition 68 Linear differential equations of second order with constant coefficients are written in the following form:

$$y'' + ay' + by = f(x)....(E),$$

where $a, b \in \mathbb{R}$ and $f: I \longrightarrow \mathbb{R}$ is a continuous function.

Solving method:

The general solution of (E) is written in the form of $: y = y_p + y_0$,

where y_p is a particular solution of (E) and y_0 is the general solution of the equation without the right-hand side (E_0) .

 $y'' + ay' + by = 0...(E_0)$ is the equation without the right-hand side.

Let $r^2 + ar + b = 0....(E_c)$ be the characteristic equation associated with (E_0) .

Remark 69 y = 0 is a solution of the differential equation (E_0) .

Solution of the equation without the right-hand side:

$$y'' + ay' + by = 0....(E_0)$$

Remark 70 Let y_1 and y_2 be two solutions of the quation (E_0) and let C_1 and $C_2 \in \mathbb{R}$, then $y = C_1y_1 + C_2y_2$ is also a solution to the equation (E_0) .

We are looking for the solutions of the equation (E_0) in the form : $y = e^{rx}$, $r \in \mathbb{R}$.

By substituting into the equation (E_0) , we obtain

$$e^{rx}(r^2 + ar + b) = 0,$$

hence, $r^2 + ar + b = 0....(E_c)$.

- If $\Delta > 0$, we have two real roots $r_1, r_2 \in \mathbb{R}$, then we obtain two solutions : $y_1 = e^{r_1 x}$ and $y_2 = e^{r_2 x}$.

In this case, the solution of (E_0) is written in the form : $y_0 = C_1 y_1 + C_2 y_2$, $y_0 = C_1 e^{r_1 x} + C_2 e^{r_2 x}$, $C_1, C_2 \in \mathbb{R}$.

- If $\Delta = 0$, we have a double root r, then we obtain two solutions : $y_1 = e^{rx}$ and $y_2 = xe^{rx}$.

In this case, the solution of (E_0) is written in the form:

$$y_0 = C_1 e^{rx} + C_2 x e^{rx}, \quad C_1, C_2 \in \mathbb{R}.$$

- If $\Delta < 0$, we have two complex and conjugate roots $r = \alpha \pm i\beta$, in this case, the solution of (E_0) is written in the form:

$$y_0 = e^{\alpha x} \left(C_1 \cos(\beta x) + C_2 \sin(\beta x) \right), \quad C_1, C_2 \in \mathbb{R}.$$

Solution of the equation with the right-hand side:

Let the equation y'' + ay' + by = f(x)....(E).

The general solution of (E) is written in the form : $y = y_p + y_0$,

where y_p is a particular solution of (E) and y_0 is the general solution of the equation without the right-hand side (E_0) : y'' + ay' + by = 0.

Method 1:

Let $y_0 = C_1 y_1 + C_2 y_2$ be the general solution of (E_0) .

We are looking for the general solution of (E) using the method of variation of constants. This method involves replacing the constants C_1 and C_2 by the functions $C_1(x)$ and $C_2(x)$ in y_0 .

We set $y = C_1(x)y_1 + C_2(x)y_2$.

We derive: $y' = C_1'(x)y_1 + C_1(x)y_1' + C_2'(x)y_2 + C_2(x)y_2'$.

We choose $C_1(x)$ and $C_2(x)$ such that : $\mathbf{C}'_1(\mathbf{x})\mathbf{y}_1 + \mathbf{C}'_2(\mathbf{x})\mathbf{y}_2 = \mathbf{0}....(\mathbf{1})$,

hence, $y' = C_1(x)y'_1 + C_2(x)y'_2$.

We derive: $y'' = C_1'(x)y_1' + C_1(x)y_1'' + C_2'(x)y_2' + C_2(x)y_2''$.

Then, we substitute into (E): y'' + ay' + by = f(x),

 $C_1'(x)y_1' + C_1(x)y_1'' + C_2'(x)y_2' + C_2(x)y_2'' + a(C_1(x)y_1' + C_2(x)y_2') + b(C_1(x)y_1 + C_2(x)y_2) = f(x),$

we obtain, $C_1(x)(y_1'' + ay_1' + by_1) + C_2(x)(y_2'' + ay_2' + by_2) + C_1'(x)y_1' + C_2'(x)y_2' = f(x)$.

Since $y_1'' + ay_1' + by_1 = 0$ and $y_2'' + ay_2' + by_2 = 0$, we get,

$$C'_1(x)y'_1+C'_2(x)y'_2=f(x)....(2).$$

From the equations (1) and (2), we obtain $C'_1(x)$ and $C'_2(x)$, then we integrate to find $C_1(x)$ and $C_2(x)$.

Therefore, to find $C_1(x)$ and $C_2(x)$, we solve the following system:

$$\begin{cases} C_1'(x)y_1 + C_2'(x)y_2 & = & 0 \\ C_1'(x)y_1' + C_2'(x)y_2' & = & f(x) \end{cases}$$

Method 2: Special cases

1) We assume that the right-hand side of the equation (E) is written in the form (E):

$$f(x) = P_n(x)e^{\lambda x},$$

where $P_n(x)$ is a polynomial of degree n and $\lambda \in \mathbb{R}$.

- If λ is not a root of the characteristic equation (E_c) , the particular solution of the equation (E) is written in the form

$$y_p = Q_n(x)e^{\lambda x},$$

where $Q_n(x)$ is a polynomial of degree n to be determined.

- If λ is a simple root of the characteristic equation (E_c) , the particular solution of the equation (E) is written in the form

$$y_p = xQ_n(x)e^{\lambda x}$$
.

- If λ is a double root of the characteristic equation (E_c) , the particular solution of the equation (E) is written in the form

$$y_p = x^2 Q_n(x) e^{\lambda x}.$$

2) We assume that the right-hand side of the equation (E) is written in the form

$$f(x) = e^{\lambda x} \left(P_n(x) \cos(\omega x) + Q_m(x) \sin(\omega x) \right),\,$$

where $P_n(x)$ is a polynomial of degree n, $Q_m(x)$ is a polynomial of degree m and $\lambda, \omega \in \mathbb{R}$.

- If $\lambda + \omega i$ is not a root of the characteristic equation (E_c) , then the particular solution of the equation (E) is written in the form

$$y_n = e^{\lambda x} \left[U_N(x) \cos(\omega x) + V_N(x) \sin(\omega x) \right]$$

where $N = \max(n, m)$, U_N and V_N are polynomials of degree N.

- If $\lambda + \omega i$ is a root of the characteristic equation (E_c) , then the particular solution of the equation (E) is written in the form

$$y_p = xe^{\lambda x} [U_N(x)\cos(\omega x) + V_N(x)\sin(\omega x)].$$

2.2.2 Principle of superposition

If the differential equation is written in the form

$$y'' + ay' + by = f_1(x) + f_2(x),$$

then the solution of this equation is written in the following form:

$$y = y_0 + y_1 + y_2,$$

where.

 y_0 is the general solution of the equation without the right-hand side :

$$y'' + ay' + by = 0, (E_0)$$

 y_1 is the particular solution of the equation :

$$y'' + ay' + by = f_1(x),$$
 (E₁)

 y_2 is the particular solution of the equation :

$$y'' + ay' + by = f_2(x). (E_2)$$

Exercise 71 Let the following differential equation:

$$y'' + 3y' + 2y = x + e^{-x}. (E)$$

1) Find the general solution y_0 of the following equation without the right-hand side:

$$y'' + 3y' + 2y = 0. (E_0)$$

2) Find the particular solution y_1 of the equation :

$$y'' + 3y' + 2y = x. (E_1)$$

3) Find the particular solution y_2 of the equation:

$$y'' + 3y' + 2y = e^{-x}. (E_2)$$

4) Deduce the general solution of the equation (E).

Solution:

Let the following differential equation:

$$y'' + 3y' + 2y = x + e^{-x}. (E)$$

40CHAPTER 2. DIFFERENTIAL EQUATIONS OF THE FIRST AND SECOND ORDER

1) We are looking for the general solution y_0 of the following equation without the right-hand side :

$$y'' + 3y' + 2y = 0. (E_0)$$

The characteristic equation : $r^2 + 3r + 2 = 0$ (E_c),

$$\Delta = 1 \Longrightarrow r_1 = -1 \text{ and } r_2 = -2,$$

then,
$$y_0 = C_1 e^{-x} + C_2 e^{-2x}$$
, $C_1, C_2 \in \mathbb{R}$.

2) We are looking for the particular solution y_1 of the equation:

$$y'' + 3y' + 2y = x, \quad (E_1)$$

where
$$f_1(x) = x = P_1(x)e^{\lambda x}$$
,

with $\lambda = 0$ and $P_1(x) = x$ is a polynomial of degree 1.

 $\lambda = 0$ is not a root of the characteristic equation (E_c) , therefore, the particular solution of the equation (E_1) is written in the form

$$y_1 = Q_1(x)e^{\lambda x} = ax + b,$$

then, $y_1' = a$ and $y_1'' = 0$.

We substitute into the equation (E_1) , we find

$$3a + 2ax + 2b = x \Longrightarrow 2a = 1$$
 and $3a + 2b = 0 \Longrightarrow a = \frac{1}{2}$ and $b = -\frac{3}{4}$

therefore,
$$y_1 = \frac{1}{2}x - \frac{3}{4}$$
.

3) We are looking for the particular solution y_2 of the equation

$$y'' + 3y' + 2y = e^{-x}.$$
 (E₂)

where
$$f_2(x) = e^{-x} = P_0(x)e^{\lambda x}$$
,

with $\lambda = -1$ and $P_0(x) = 1$ is a polynomial of degree 1.

 $\lambda = -1$ is a simple root of the characteristic equation (E_c) , therefore, the particular solution of the equation (E_2) is written in the form

$$y_2 = Q_0(x)e^{\lambda x} = xAe^{-x},$$

then,
$$y_2' = -xAe^{-x} + Ae^{-x} = (-Ax + A)e^{-x}$$
,

and
$$y_2'' = -(-Ax + A)e^{-x} + -Ae^{-x} = (Ax - 2A)e^{-x}$$
.

We substitute into the equation (E_2) , we find

$$(Ax - 2A)e^{-x} + 3(-Ax + A)e^{-x} + 2xAe^{-x} = e^{-x} \iff A = 1,$$

therefore, $y_2 = xe^{-x}$.

2.3. EXERCISES 41

4) We deduce the general solution of the equation (E).

According to the principle of superposition, the general solution of the equation (E) is written in the form

$$y = y_0 + y_1 + y_2 = C_1 e^{-x} + C_2 e^{-2x} + \frac{1}{2}x - \frac{3}{4} + xe^{-x}, \quad C_1, C_2 \in \mathbb{R}.$$

2.3 Exercises

Exercise 72 Solve the following differential equations, specifying the type :

1)
$$xy' - 2y = x^4(1 + \tan^2 x)$$
.

Solution:

$$xy' - 2y = x^4(1 + tg^2x)$$
 (E):

It is a first-order linear differential equation.

First, we look for the solution of the equation without the right-hand side :

$$(E_0): xy' - 2y = 0,$$

y = 0 is a solution of (E_0) ,

if
$$y \neq 0$$
, $\int \frac{dy}{y} = 2 \int \frac{dx}{x} \Longrightarrow \ln|y| = 2 \ln|x| + C$, $C \in \mathbb{R}$,

then,
$$\ln |y| = \ln x^2 + C \Longrightarrow |y| = e^C x^2 \Longrightarrow y = ^+_- e^C x^2 = K x^2, \ K \in \mathbb{R}^*.$$

Since
$$y = 0$$
 is a solution of (E_0) , then, $y = Kx^2$, $K \in \mathbb{R}$.

The particular solution is not obvious, so we apply the method of variation of constants :

we set $y_G = K(x)x^2$ (It is the general solution of (E)), then

$$y'_G = K'(x)x^2 + 2xK(x).$$

We replace in the equation (E): $xy' - 2y = x^4(1 + \tan^2 x)$,

$$K'(x)x^3 + 2x^2K(x) - 2K(x)x^2 = x^4(1 + \tan^2 x),$$

then,
$$K'(x) = x(1 + \tan^2 x) \Longrightarrow K(x) = \int x(1 + \tan^2 x) dx$$
.

We apply an integration by parts, we set

$$\begin{cases} U = x \\ V' = 1 + \tan^2 x \end{cases} \Longrightarrow \begin{cases} U' = 1, \\ V = \tan x, \end{cases}$$

$$K(x) = x \tan x - \int \tan x dx = x \tan x + \ln|\cos x| + C, \quad C \in \mathbb{R}.$$

therefore,
$$y_G = K(x)x^2 = x^3 \tan x + x^2 \ln|\cos x| + Cx^2$$
, $C \in \mathbb{R}$.

42CHAPTER 2. DIFFERENTIAL EQUATIONS OF THE FIRST AND SECOND ORDER

Exercise 73 Solve the following differential equations, specifying the type :

$$(x^3 + 1)y' - 3x^2y + xy^3 = 0.$$

Solution:

$$(x^3+1)y'-3x^2y+xy^3=0$$
 (E):

It's a first-order Bernoulli differential equation.

y = 0 is a solution de (E).

If $y \neq 0$, we divide by y^3 , We find

$$(x^3 + 1)y'y^{-3} - 3x^2y^{-2} + x = 0 \quad (E)'.$$

We set
$$Z = y^{-2} \implies Z' = -2y'y^{-3}$$
.

We replace in the equation (E)' and we obtain

$$-(x^3+1)\frac{Z'}{2}-3x^2Z=-x$$
 (E\ell): It's a linear differential equation.

We first seek the solution of the equation without the right-hand side:

$$(E\ell_0): -(x^3+1)\frac{Z'}{2} - 3x^2Z = 0$$
, we obtain

$$Z_0 = \frac{K}{(x^3 + 1)^2}, \quad K \in \mathbb{R}.$$

The particular solution being not obvious, we apply the method of variation of the constant (MVC):

we set
$$Z_G = \frac{K(x)}{(x^3+1)^2}$$
.

We derive and substitute into $(E\ell)$, we get

$$K(x) = \frac{2}{5}x^5 + x^2 + C, \quad C \in \mathbb{R},$$

then,
$$Z_G = \frac{K(x)}{(x^3+1)^2} = \frac{\frac{2}{5}x^5 + x^2 + C}{(x^3+1)^2} = \frac{2x^5 + 5x^2 + C}{5(x^3+1)^2},$$

$$y^2 = \frac{1}{Z} \Longrightarrow y = ^+_- \sqrt{\frac{5(x^3 + 1)^2}{2x^5 + 5x^2 + C}}, \ C \in \mathbb{R}.$$

Exercise 74 I) Let the differential equation be defined by

$$(1 - x^3)y' + 3x^2y = -y^2. (1)$$

- 1) Give the type of this equation.
- 2) Find the general solution of (1).

2.3. EXERCISES

43

II) Let the differential equation be defined by :

$$(1 - x^3)y' + x^2y + y^2 - 2x = 0. (2)$$

- 1) Give the type of this equation.
- 2) Verify that $y_0 = x^2$ is a particular solution of (2).
- 3) By using the change of variable $u = y y_0$ transform the equation (2) into the form (1).
 - 4) Deduce the general solution of (2).

Solution:

$$I) 1) (1 - x^3)y' + 3x^2y = -y^2 (1),$$

It's a first-order Bernoulli differential equation.

2) We are looking for the general solution of (1):

if y = 0: it is a solution of (1),

if $y \neq 0$, we divide by y^2 , we find

$$(1 - x^3)y'y^{-2} + 3x^2y^{-1} = -1. (1)'.$$

We set
$$Z = y^{-1} \Longrightarrow Z' = -y'y^{-2}$$
.

By substituting into (1)', we obtain

$$-(1-x^3)Z' + 3x^2Z = -1$$
: (E\ell) (Linear differential equation),

$$(E\ell_0): -(1-x^3)Z' + 3x^2Z = 0$$
 (Separable differential equation),

the solution of $(E\ell_0)$ is given by

$$Z = \frac{K}{1 - x^3}, \ K \in \mathbb{R}.$$

The particular solution being not obvious, we apply the method of variation of constant (MVC) :

We set
$$Z_G = \frac{K(x)}{1 - x^3}$$
,

$$Z'_G = \frac{K'(x)(1-x^3) - K(x)(-3x^2)}{(1-x^3)^2}.$$

We substitute into $(E\ell)$ and we find K'(x) = 1,

then,
$$K(x) = x + C$$
, $C \in \mathbb{R}$,

hence,
$$Z_G = \frac{x+C}{1-x^3}$$
.

Finally,
$$y = \frac{1}{Z_G} = \frac{1 - x^3}{x + C}$$
.

44CHAPTER 2. DIFFERENTIAL EQUATIONS OF THE FIRST AND SECOND ORDER

II) 1)
$$(1-x^3)y' + x^2y + y^2 - 2x = 0$$
 (2):

It's a Riccati differential equation.

2)
$$y_0 = x^2 \Longrightarrow y'_0 = 2x$$
: Verify the equation (2).

3) We set
$$u = y - y_0 \Longrightarrow y = u + x^2 \Longrightarrow y' = u' + 2x$$
.

By substituting into the equation (2), we obtain

$$(1-x^3)u' + 3x^2u = -u^2$$
: it is the equation (1), then its solution is

$$u = \frac{1 - x^3}{x + C},$$

therefore,
$$y = u + x^2 = \frac{1 - x^3}{x + C} + x^2 = \frac{1 + Cx^2}{x + C}, \ C \in \mathbb{R}.$$

Exercise 75 Solve the following differential equations of the second order:

1)
$$y'' - 3y' + 2y = 0$$
.

2)
$$y'' + 2y' + 5y = 0$$
 satisfying $y(0) = 0$ and $y'(0) = 1$.

3)
$$y'' - 2y' + y = (x^2 + 1)e^x$$
.

4)
$$y'' - y' + y = 2x^2e^{-x}$$
.

5)
$$y'' - y = -6\cos x + 2\sin x$$
.

Solution:

1)
$$y'' - 3y' + 2y = 0$$
.

The characteristic equation : $r^2 - 3r + 2 = 0$,

$$\Delta = 1 \Longrightarrow r_1 = 1 \text{ et } r_2 = 2,$$

then,
$$y_0 = C_1 e^x + C_2 e^{2x}$$
, $C_1, C_2 \in \mathbb{R}$.

1.

2)
$$y'' + 2y' + 5y = 0$$
 satisfying $y(0) = 0$ and $y'(0) = 1$.

The characteristic equation : $r^2 + 2r + 5 = 0$,

$$\Delta = -16 = 16i^2 \Longrightarrow r = -1 \pm 2i$$

then,
$$y_0 = e^{-x} (C_1 \cos(2x) + C_2 \sin(2x)), \quad C_1, C_2 \in \mathbb{R}.$$

We are looking for the particular solution that satisfies y(0) = 0 and y'(0) = 0

$$y(0) = 0 \iff C_1 = 0,$$

then,
$$y_0 = C_2 e^{-x} \sin(2x) \Longrightarrow y_0' = -C_2 e^{-x} \sin(2x) + 2C_2 e^{-x} \cos(2x)$$
,

2.3. EXERCISES

$$y'(0) = 1 \iff C_2 = \frac{1}{2},$$

hence, $y_0 = \frac{1}{2}e^{-x}\sin(2x).$

3)
$$y'' - 2y' + y = (x^2 + 1)e^x \dots (E)$$
.

We begin by solving the equation without the right-hand side:

45

$$y'' - 2y' + y = 0.....(E_0).$$

The characteristic equation : $r^2 - 2r + 1 = 0$,

 $\Delta = 0 \Longrightarrow r = 1$: it is a double root,

then,
$$y_0 = C_1 e^x + C_2 x e^x$$
, $C_1, C_2 \in \mathbb{R}$.

We now seek the general solution of (E) using the method of variation of constants. This method consists of replacing the constants C_1 et C_2 by the functions $C_1(x)$ and $C_2(x)$.

We set
$$y = C_1(x)e^x + C_2(x)xe^x = C_1(x)y_1 + C_2(x)y_2$$
,

where
$$y_1 = e^x$$
 and $y_2 = xe^x$.

To find $C_1(x)$ and $C_2(x)$, we solve the following system:

$$\begin{cases} C'_1(x)y_1 + C'_2(x)y_2 &= 0, \\ C'_1(x)y'_1 + C'_2(x)y'_2 &= f(x), \end{cases}$$

$$\iff \begin{cases} C'_1(x)e^x + C'_2(x)xe^x &= 0, \\ C'_1(x)e^x + C'_2(x)(x+1)e^x &= (x^2+1)e^x, \end{cases}$$

$$\iff \begin{cases} C'_1(x) + C'_2(x)x &= 0, \\ C'_1(x) + C'_2(x)(x+1) &= x^2+1, \end{cases}$$

$$\iff \left\{ \begin{array}{lcl} C_1'(x) & = & -C_2'(x)x \\ C_2'(x) & = & x^2+1 \end{array} \right. \iff \left\{ \begin{array}{lcl} C_1'(x) & = & -x^3-x, \\ C_2'(x) & = & x^2+1, \end{array} \right.$$

hence

$$\begin{cases} C_1(x) &= -\frac{x^4}{4} - \frac{x^2}{2} + K_1, \\ C_2(x) &= \frac{x^3}{3} + x + K_2, \end{cases}$$

then,
$$y = C_1(x)e^x + C_2(x)xe^x = \left(-\frac{x^4}{4} - \frac{x^2}{2} + K_1\right)e^x + \left(\frac{x^3}{3} + x + K_2\right)xe^x$$
,

thus,
$$y = (\frac{x^4}{12} + \frac{x^2}{2} + K_1 + K_2 x)e^x$$
 is the general solution of (E) .

4)
$$y'' - y' + y = 2x^2e^{-x}....(F)$$
.

We begin by solving the equation without the right-hand side:

$$y'' - y' + y = 0.....(F_0).$$

The characteristic equation : $r^2 - r + 1 = 0...(F_c)$,

$$\Delta = -3 = 3i^2 \Longrightarrow r = \frac{1 \pm i\sqrt{3}}{2},$$

then,
$$y_0 = e^{\frac{1}{2}x} \left(C_1 \cos\left(\frac{\sqrt{3}}{2}x\right) + C_2 \sin\left(\frac{\sqrt{3}}{2}x\right) \right), \quad C_1, C_2 \in \mathbb{R}.$$

We now seek a particular solution of (F) using the second method : the right-hand side of the equation (F) is written in the form

$$f(x) = 2x^2 e^{-x} = P_2(x)e^{\lambda x},$$

where $\lambda = -1$ and $P_2(x) = 2x^2$ a polynomial of degree 2.

 $\lambda = -1$ is not a root of the characteristic equation (F_c) , then the particular solution of the equation (F) is written in the form

$$y_p = Q_2(x)e^{\lambda x} = (ax^2 + bx + c)e^{-x}.$$

We calculate y'_n and y''_n :

$$y'_p = -(ax^2 + bx + c)e^{-x} + (2ax + b)e^{-x} = (-ax^2 + (2a - b)x + b - c)e^{-x},$$

$$y''_p = -(-ax^2 + (2a - b)x + b - c)e^{-x} + (-2ax + 2a - b)e^{-x}$$

$$= (ax^2 + (-4a + b)x + 2a - 2b + c)e^{-x}.$$

We substitute y'_p and y''_p in the equation (F), we obtain

$$(ax^{2} + (-4a + b)x + 2a - 2b + c)e^{-x} - (-ax^{2} + (2a - b)x + b - c)e^{-x} + (ax^{2} + bx + c)e^{-x} = 2x^{2}e^{-x}$$

$$\iff 3ax^2 + (-6a + 3b)x + 2a - 3b + 3c = 2x^2,$$

by identification, we find

$$\begin{cases} 3a & = 2 \\ -6a + 3b & = 0 \\ 2a - 3b + 3c & = 0 \end{cases} \iff \begin{cases} a = 2/3, \\ b = 4/3, \\ c = 8/9, \end{cases}$$

then,
$$y_p = \left(\frac{2}{3}x^2 + \frac{4}{3}x + \frac{8}{9}\right)e^{-x}$$
,

hence, the general solution of (F) is $y = y_p + y_0$,

$$y = \left(\frac{2}{3}x^2 + \frac{4}{3}x + \frac{8}{9}\right)e^{-x} + e^{\frac{1}{2}x}\left(C_1\cos\left(\frac{\sqrt{3}}{2}x\right) + C_2\sin\left(\frac{\sqrt{3}}{2}x\right)\right),$$

2.3. EXERCISES

47

$$C_1, C_2 \in \mathbb{R}$$
.

5)
$$y'' - y = -6\cos x + 2\sin x....(G)$$
.

We begin by solving the equation without the right-hand side

$$y'' - y = 0....(G_0).$$

The characteristic equation : $r^2 - 1 = 0...(G_c)$,

$$r^2 = 1 \Longrightarrow r_1 = 1 \text{ and } r_2 = -1,$$

then,
$$y_0 = C_1 e^x + C_2 e^{-x}$$
, $C_1, C_2 \in \mathbb{R}$.

Now, we seek a particular solution of (G) using the second method: the right-hand side of the equation (G) is written in the form

$$f(x) = e^{\lambda x} [P_0(x)\cos(\omega x) + Q_0(x)\sin(\omega x)] = -6\cos x + 2\sin x,$$

with
$$\lambda = 0$$
, $\omega = 1$, $P_0(x) = -6$ and $Q_0(x) = 2$ polynomials of degree 0.

 $\lambda + \omega i = i$ is not a root of the characteristic equation (G_c) , therefore, the particular solution of the equation (G) is written in the form

$$y_p = e^{\lambda x} [U_0(x)\cos(\omega x) + V_0(x)\sin(\omega x)] = A\cos(x) + B\sin(x).$$

We calculate y_p' and y_p'' :

$$y_p' = -A\sin x + B\cos x,$$

$$y_p'' = -A\cos x - B\sin x.$$

We substitute y'_p and y''_p in the equation (G), we obtain

$$-A\cos x - B\sin x - A\cos x - B\sin x = -6\cos x + 2\sin x$$

$$\implies -2A\cos x - 2B\sin x = -6\cos x + 2\sin x$$

by identification, we find

$$\begin{cases} -2A &= -6 \\ -2B &= 2 \end{cases} \iff \begin{cases} A &= 3, \\ B &= -1, \end{cases}$$

then,
$$y_p = 3\cos(x) - \sin(x)$$
,

hence, the general solution of (G) is

$$y = y_n + y_0 = 3\cos(x) - \sin(x) + C_1e^x + C_2e^{-x}, \quad C_1, C_2 \in \mathbb{R}$$

 $48 CHAPTER\ 2.\ DIFFERENTIAL\ EQUATIONS\ OF\ THE\ FIRST\ AND\ SECOND\ ORDER$

Chapter 3

Usual formulas

3.1 Partial sum of an arithmetic sequence

 $U_n = U_0 + nr, \ r \in \mathbb{R}^*.$

$$S_n = U_0 + U_1 + U_2 + \dots + U_n = (U_0 + U_n) \frac{n+1}{2}.$$

3.2 Partial sum of a geometric sequence

 $U_n = U_0 q^n, \ q \neq 1,$

$$S_n = U_0 + U_1 + U_2 + \dots + U_n = U_0 \left(\frac{1 - q^{n+1}}{1 - q} \right).$$

If
$$q = 1, S_n = (n+1)U_0$$
.

$$\lim_{n \to +\infty} q^n = 0 \Longleftrightarrow -1 < q < 1.$$

3.3 Trigonometry Formulas

- 1) $\sin(a+b) = \sin a \cos b + \sin b \cos a$, so $\sin 2a = 2 \sin a \cos a$.
 - 2) $\sin(a-b) = \sin a \cos b \sin b \cos a$.
 - 3) $\cos(a+b) = \cos a \cos b \sin a \sin b$, so $\cos 2a = \cos^2 a \sin^2 a$.
 - 4) $\cos(a-b) = \cos a \cos b + \sin a \sin b$.
 - 5) $\cos 2a = 2\cos^2 a 1$, so $\cos^2 a = \frac{\cos 2a + 1}{2}$.
 - 6) $\cos 2a = 1 2\sin^2 a$, so $\sin^2 a = \frac{1 \cos 2a}{2}$.

7)
$$\sin p + \sin q = 2\sin\frac{p+q}{2}\cos\frac{p-q}{2}.$$

8)
$$\sin p - \sin q = 2\sin\frac{p-q}{2}\cos\frac{p+q}{2}.$$

9)
$$\cos p + \cos q = 2\cos\frac{p-q}{2}\cos\frac{p+q}{2}$$
.

10)
$$\cos p - \cos q = -2\sin\frac{p-q}{2}\sin\frac{p+q}{2}$$
.

11)
$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \cdot \tan b}.$$

12)
$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \cdot \tan b}.$$

Relation between sine and cosine $\sin^2 x + \cos^2 x = 1$, $\forall x \in \mathbb{R}$.

3.4 Common values

Number
$$0 \quad \frac{\pi}{6} \quad \frac{\pi}{4} \quad \frac{\pi}{3} \quad \frac{\pi}{2} \quad \pi$$
sine $0 \quad \frac{1}{2} \quad \frac{\sqrt{2}}{2} \quad \frac{\sqrt{3}}{2} \quad 1 \quad 0$
cosine $1 \quad \frac{\sqrt{3}}{2} \quad \frac{\sqrt{2}}{2} \quad \frac{1}{2} \quad 0 \quad -1$
tangent $0 \quad \frac{\sqrt{3}}{3} \quad 1 \quad \sqrt{3} \quad 0$

3.5 Properties of hyperbolic functions

Hyperbolic sine : $shx = \frac{e^x - e^{-x}}{2}, \ \forall x \in \mathbb{R}.$

Hyperbolic cosine : $chx = \frac{e^x + e^{-x}}{2}, \ \forall x \in \mathbb{R}.$

- 1) $chx + shx = e^x$.
- $2) chx shx = e^{-x}.$
- 3) $ch^2x sh^2x = 1$.
- 4) ch(x+y) = chx.chy + shx.shy.
- 5) $ch(2x) = ch^2x + sh^2x = 1 + 2sh^2x = 2ch^2x 1$.
- 6) sh(x + y) = shx.chy + shy.chx.
- 7) sh(2x) = 2shx.chx.

3.6 Derivatives of usual functions

The function

The derivative

$$f(x) = x^n$$

$$f'(x) = nx^{n-1}, \forall x \in \mathbb{R}$$

$$f(x) = \ln x$$

$$f'(x) = \frac{1}{x}, \forall x > 0$$

$$f(x) = e^x$$

$$f'(x) = e^x, \forall x \in \mathbb{R}$$

$$f(x) = \sqrt{x}$$

$$f'(x) = \frac{1}{2\sqrt{x}}, \forall x > 0$$

$$f(x) = \sin x$$

$$f'(x) = \cos x, \forall x \in \mathbb{R}$$

$$f(x) = \cos x$$

$$f'(x) = -\sin x, \forall x \in \mathbb{R}$$

$$f(x) = \tan x = \frac{\sin x}{\cos x}$$

$$f'(x) = \frac{1}{\cos^2 x} = 1 + \tan^2 x, x \neq \frac{\pi}{2} + k\pi$$

$$f(x) = shx = \frac{e^x - e^{-x}}{2}$$

$$f'(x) = chx = \frac{e^x + e^{-x}}{2}, \forall x \in \mathbb{R}$$

$$f(x) = chx$$

$$f'(x) = shx, \forall x \in \mathbb{R}$$

$$f(x) = thx = \frac{shx}{chx}$$

$$f'(x) = \frac{1}{ch^2x} = 1 - th^2x, \forall x \in \mathbb{R}$$

$$f(x) = \arcsin x, \forall x \in [-1, 1]$$

$$f'(x) = \frac{1}{\sqrt{1 - x^2}}, \forall x \in]-1, 1[$$

$$f(x) = \arccos x, \forall x \in [-1, 1]$$

$$f'(x) = \frac{-1}{\sqrt{1-x^2}}, \forall x \in]-1, 1[$$

$$f(x) = \arctan x$$

$$f'(x) = \frac{1}{1+x^2}, \forall x \in \mathbb{R}$$

$$f(x) = \arg shx$$

$$f'(x) = \frac{1}{\sqrt{x^2 + 1}}, \forall x \in \mathbb{R}$$

$$f(x) = \arg chx, \forall x \ge 1$$

$$f'(x) = \frac{1}{\sqrt{x^2 - 1}}, \forall x > 1$$

$$f(x) = \arg thx, \forall x \in]-1, 1[$$

$$f'(x) = \frac{1}{1 - x^2}, \forall x \in]-1, 1[$$

$$f(x) = (U(x))^n$$

$$f'(x) = nU'(x)U^{n-1}(x)$$

$$f(x) = \ln(U(x))$$

$$f'(x) = \frac{U'(x)}{U(x)}$$

$$f(x) = e^{ax}$$

$$f'(x) = ae^{ax}, \forall x \in \mathbb{R}$$

3.7 Antiderivatives of usual functions

The function	The antiderivative
$f(x) = x^n$	$\int f(x)dx = \frac{x^{n+1}}{n+1} + C, \forall x \in \mathbb{R}$
$f(x) = \ln x$	$\int f(x)dx = x \ln x - x + C, \forall x > 0$
$f(x) = e^x$	$\int f(x)dx = e^x + C, \forall x \in \mathbb{R}$
$f(x) = \sqrt{x}$	$\int f(x)dx = \frac{2}{3}x^{3/2} + C, \forall x > 0$
$f(x) = \sin x$	$\int f(x)dx = -\cos x + C, \forall x \in \mathbb{R}$
$f(x) = \cos x$	$\int f(x)dx = \sin x + C, \forall x \in \mathbb{R}$
$f(x) = \tan x = \frac{\sin x}{\cos x}$	$\int f(x)dx = -\ln \cos x + C - , x \neq \frac{\pi}{2} + k\pi$
$f(x) = shx = \frac{e^x - e^{-x}}{2}$	$\int f(x)dx = chx + C = \frac{e^x + e^{-x}}{2} + C, \forall x \in \mathbb{R}$
$f(x) = chx = \frac{e^x + e^{-x}}{2}$	$\int f(x)dx = shx + C, \forall x \in \mathbb{R}$
$f(x) = thx = \frac{shx}{chx}$	$\int f(x)dx = \ln(chx) + C, \forall x \in \mathbb{R}$
$f(x) = U^n(x)U'(x)$	$\int f(x)dx = \frac{U^{n+1}(x)}{n+1} + C$
$f(x) = \sin(ax), a \neq 0$	$\int f(x)dx = -\frac{\cos(ax)}{a} + C, \forall x \in \mathbb{R}$
$f(x) = e^{ax}, a \neq 0$	$\int f(x)dx = \frac{e^{ax}}{a} + C, \forall x \in \mathbb{R}$

3.8. LEXICON 53

3.8 Lexicon

Α

- Absolute value : valeur absolue.

- Absolute convergence : convergence absolue.
- Almost : presque.
- Analysis : analyse.
- Antisymetric : antisymétrique.
- Apex : sommet.
- Argument : argument.
- Arithmetic : arithmétique.
- Array: tableau.
- Assume : supposer.
- Assumption : supposition.
- Axiom: axiome.
- Axis: axe.

\mathbf{B}

- Basis: base.
- Bijective : bijective.
- Bounded : borné.
- Bracket : parenthèse.
- By induction : par récurrence.

\mathbf{C}

- Calculus : calcul.
- Cartesian coordinate system.: Repère cartésien.
- Cauchy sequence : suite de Cauchy.
- Center : centre
- Characteristic : caractéristique.
- Characteristic polynomial : polynôme caractéristique.
- Circle : cercle.
- Closed : fermé.
- Coefficient : coefficient.
- Combination : combinaison.
- Common factor : facteur commun.
- Commutative : commutatif.
- Complete : complet.
- Complex number : nombre complexe.
- Computation : calcul.
- Consequently : par conséquent.
- Constant : constante.
- Continuity : continuité.
- Continuous (function) : continue (fonction).
- Contraction : contraction.
- Convergence : convergence.
- Converge to a limit: converger vers une limite.
- Converse of a theorem : réciproque d'un théorème.

- Conversely : réciproquement.
- Coordinate : coordonnée.
- Cosine : cosinus.
- Countable : dénombrable.
- Counterexample : contre-exemple.
- Coverage of a set : recouvrement d'un ensemble.
- Cube root : racine cubique.
- Curve : courbe.

\mathbf{D}

- Decomposition : décomposition.
- Decreasing function : fonction décroissante.
- Defined : défini.
- Degree : degré.
- Delete (to) : supprimer.
- Denote : noter.
- Density : densité.
- Derivative : dérivée.
- Direct sum : somme directe.
- Divide : diviser.
- Dot : point.

\mathbf{F}

- Eigenvalue : valeur propre.
- Eigenvector : vecteur propre.
- Element : élément.
- Endpoint : Extrémité.
- Entire function : fonction entière.
- Equality : égalité.
- Equation : équation.
- Equilateral triangle : triangle equilatéral.
- Equivalence relation : relation d'équivalence.
- Equivalent : équivalent
- Euclidean : euclidien.
- Even: pair.
- Everywhere : partout.
- Exact : exact.
- Example : exemple.
- Exponential: exponential.

\mathbf{F}

- Factorial : factoriel.
- Factorise: factoriser.
- Field : corps.
- Finite : fini.
- Finite dimensional real vector space : espace vectoriel réel de dimension

finie

- Fixed : fixe.
- Fixed point : point fixe.

3.8. LEXICON 55

```
- Floor function : fonction partie entière.
- Formula : formule.
- Fractional line : trait de fraction.
- Free : libre.
- Function : fonction.
- Fundamental: fondamental.
\mathbf{G}
- Graph : graphe.
- Greatest : plus grand (le).
- Greatest common divisor (gcd) : pgcd.
- Group: groupe.
\mathbf{H}
- Higher derivative : dérivée d'ordre supérieur.
- Homogeneous : homogène.
- However : toutefois.
- Hyperbola : hyperbole.
- Hypotenuse : hypoténuse.
- Hypothesis : hypothèse.
Ι
- Identity : identité.
- Identity element : élément neutre.
- If and only if : si et seulement si.
- Increasing function: fonction croissante.
- Indeed : en effet.
- Independent : indépendant.
- Induction : récurrence.
- Inequality : inégalité.
- Infimum (greatest lower bound) : borne inférieure.
- Infinite: infini.
- Integer number : nombre entier.
- Integral : intégrale.
- Intermediate value theorem : théorème des valeurs intermédiaires.
- Interval: intervalle.
- inverse image : image réciproque.
- Invertible : inversible.
- Involve: impliquer.
- Irreducible : irréductible.
- Isocel triangle : triangle isocèle
- Isolated : isolé.
- Isomorphism : isomorphisme.
\mathbf{J}
\mathbf{K}
- Kernel: noyau.
- Law of composition : loi de composition.
- Least : plus petit.
```

- Least common multiple (lcm) : ppcm.
- Lemma : lemme.Length : longueur.
- Less than : plus petit que
- Let....be : soit. - Limit : limite
- Linear : linéaire.
- Linearly independent family : famille libre.
- Lower limit : limite inférieure.
- Lower bound : minorant.

\mathbf{M}

- Major : majeur.
- Majorized : majoré
- Manifold : variété.
- Map: application.
- Maximal : maximal.
- Mean : moyenne.
- Meet of two sets : intersection de deux ensembles.
- Merely : seulement.
- Minimal : minimal.
- Minorized : minoré.
- Monic : unitaire.
- Monotonic function: fonction monotone.
- Multiplicity : multiplicité.
- Multiply: multiplier.

\mathbf{N}

- Necessary condition : condition nécessaire.
- Negligible : négligeable.
- Neighborhood : voisinage.
- Neperian logarithm : logarithme népérien.
- Non-empty: non vide.
- Not all zero : non tous nuls.
- Null: nul.
- Number : nombre.
- Numerator : numérateur.

O

- Object : objet.
- Odd : impair.
- One-to-one map : application injective.
- Onto (a map): surjective.
- Open : ouvert.
- Operator : opérateur.
- Order : ordre.
- Order or multiplicity of a root : ordre de multiplicité d'une racine.
- Order relation : relation d'ordre.
- Ordinate : ordonnée.

3.8. LEXICON 57

```
- Parameter : paramètre
- Partial fraction expansion : décomposition en éléments simples.
- Partial order: relation d'ordre.
- Partition : partition.
- Perfect : parfait.
- Period: période.
- Periodicity : périodicité.
- Permutation : permutation.
- Plane : plan.
- Point : point.
- Polynomial : polynôme.
- Power: puissance.
- Prime : premier.
- Prime number : nombre premier.
- Product : produit.
- Proof : preuve.
- Proper : propre.
- Property : propriété.
- Pythagorean triple : triplet pythagoricien.
\mathbf{Q}
\mathbf{R}
- Radius : rayon
- Raise to the power n : élever à la puissance n.
- Range: image.
- Rank: rang.
- Ratio : rapport.
- Rational function: fonction rationnelle.
- Real number : nombre réel.
- Rectangle : rectangle.
- Reduced : réduit.
- Regular : régulier
- Relatively prime integers: entiers premiers entre eux.
- Remark : remarque.
- representation : représentation.
- Right-hand side : membre de droite.
- Ring: anneau.
- Root : racine.
- Row: ligne.
- Rule : règle.
- Ruler : règle (instrument).
- Scalar : scalaire.
- Schwarz inequality : inégalité de Schwarz.
- Section : section.
- Segment : segment.
```

```
- Sequence : suite.
- Series : série.
- Set : ensemble.
- Several : plusieurs.
- Shape : forme.
- Sign: signe.
- Sine : sinus.
- Singular : singulier.
- Size : taille.
- Small: petit.
- Smooth: lisse.
- Space : espace.
- Square : élever au carré.
- Square : carré.
- Square root : racine carré.
- Star : Etoile.
- Strictly: strictement
```

- Sub : sous-
- Subgroup: sous-groupe.
- Subset : sous-ensemble (partie).
- Subspace : sous-espace.
- Subtract : soustraire.
- Subtraction : soustraction.
- Sufficient : suffisant.
- Sufficient condition : condition suffisante.
- Sum : somme.
- Summarize (to) : résumer.
- Support : support.
- Supremum (least upper bound) : borne supérieure.
- Surface : surface.
- Symmetric : symétrique.
- Symmetry : symétrie.
- System of linear equations : système d'équations linéaires.

\mathbf{T}

- Tangent : tangente.
- Term : terme.
- Theorem : théorème.
- Theory: théorie.
- Totally ordered set : ensemble totalement ordonné.
- Trace : trace.
- Trajectory: trajectoire.
- Transform : transformation.
- Transitive : transitif.
- Translation : translation.
- Transpose : transposé.
- Trapezoid : trapèze.

3.8. LEXICON 59

```
- Triangle : triangle.
- Triangle inequality : inégalité triangulaire.
- Trivial : trivial.
- Type: type.
- Uncountable : indénombrable.
- Uniform continuity : continuité uniforme.
- Union : réunion.
- Universal : universel.
- Unknown: inconnue.
- Upper bound : majorant.
\mathbf{V}
- Value : Valeur.
- Variable : variable.
- Vector : vecteur.
- Vector space : espace vectoriel.
- Volume : volume.
\mathbf{W}
- Well-defined : bien défini.
- Width : largeur.
- Without loss of generality : sans perte de généralité.
\mathbf{X}
\mathbf{Y}
{f Z}
- Zéro : zero.
```

- Zero of a polynomial : racine d'un polynôme.

Bibliography

- [1] K. Allab. Eléménts d'analyse. Vuibert (Paris).
- [2] C. Baba-Hamed, K. Benhabib. Analyse I. OPU Alger. 1985.
- [3] C. Djebour. Analyse1 Examens Corrigés. OPU Oran. 2006.
- [4] M. H. Mortad. Exercices corrigés d'Analyse. Editions Houma. 2019.
- [5] https://www.bibmath.net/trans/index.php?action=liste&prem=e&fin=m&origine=e