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Chapter 1

Riemann integrals and
Antiderivatives

1.1 Riemann integral

1.1.1 Subdivision

De�nition 1 Let [a; b] be a closed bounded interval of R: We call subdivision
of [a; b], any increasing sequence d = (x0;x1;x2;:::::; xn) of points of [a; b] such
that x0 = a < x1 < x2 < ::::: < xn = b:
We obtain n intervals [xi; xi+1] (i 2 f0; 1; 2; ::::; (n� 1)g), called partial

intervals of the subdivision.

1.1.2 Darboux Sum

Let f : [a; b] �! R be a bounded function, i.e.

9m;M 2 R;8x 2 [a; b] ; m � f(x) �M:

De�nition 2 The integral of a positive function over the interval [a; b] is the
area of the region A enclosed by the curve of f , the axis (OX) and the two lines
with equations x = a and x = b:

We consider the subdivision d = (x0;x1;x2;:::::; xn) of the interval [a; b] :

1



2 CHAPTER 1. RIEMANN INTEGRALS AND ANTIDERIVATIVES

We set
mi = inf

x2[xi;xi+1]
f(x), i 2 f0; 1; 2; ::::; (n� 1)g ;

Mi = sup
x2[xi;xi+1]

f(x); i 2 f0; 1; 2; ::::; (n� 1)g :

De�nition 3 - The lower Darboux sum is the following surface :

s(f; d) =
n�1X
i=0

mi(xi+1 � xi):

-The upper Darboux sum is the following surface :

S(f; d) =

n�1X
i=0

Mi(xi+1 � xi):

Remark 4 Since mi �Mi, then we have s(f; d) � A � S(f; d):

1.1.3 Lower Darboux integral and upper Darboux integral

De�nition 5 We de�ne the following two sets :
Ds(f) = fs(f; d) = d subdivision of [a; b]g ;
DS(f) = fS(f; d) = d subdivision of [a; b]g :

- The lower Darboux integral of f over [a; b] is the following value :

inf

bZ
a

f(x)dx := supDs(f):
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- The upper Darboux integral of f over [a; b] s the following value :

sup

bZ
a

f(x)dx := infDS(f):

Remark 6 We have s(f; d) � supDs(f) � infDS(f) � S(f; d); therefore

s(f; d) � inf
bZ
a

f(x)dx � sup
bZ
a

f(x)dx � S(f; d):

1.1.4 Riemann integral

De�nition 7 Let f : [a; b] �! R be a bounded function. We say that f is
Riemann-integrable on [a; b] if

inf

bZ
a

f(x)dx = sup

bZ
a

f(x)dx:

Remark 8 The common value of the lower and upper Darboux integrals is then
called the Riemann integral of f over [a; b] and it is denoted

bZ
a

f(x)dx = inf

bZ
a

f(x)dx = sup

bZ
a

f(x)dx:

Example 9 f : [a; b] �! R = f(x) = k; k 2 R:
bZ
a

f(x)dx = k(b� a):

Example 10

4Z
0

[x] dx = 0 + 1(2� 1) + 2(3� 2) + 3(4� 3) = 6:



4 CHAPTER 1. RIEMANN INTEGRALS AND ANTIDERIVATIVES

1.1.5 Riemann sum

De�nition 11 Let ci 2 [xi; xi+1] : The sum �(f; d) =
n�1P
i=0

f(ci)(xi+1 � xi) is

called the Riemann sum of f corresponding to d and C = (c0; : : : ; cn�1):

Remark 12 Since xi � ci � xi+1, then we have mi � f(ci) � Mi and hence
we obtain s(f; d) � �(f; d) � S(f; d):

The step size of the subdivision

Let the subdivision d = (x0; x1; : : : :; xn) of the interval [a; b]: The real number

�(d) = max
0�i�n�1

(xi+1 � xi) is called the step size of the subdivision d of the
interval [a; b].

Theorem 13 If f is Riemann integrable over [a; b], then

lim
�(d)�!0

�(f; d) =

bZ
a

f(x)dx:

Theorem 14 Any function continuous on [a; b] is integrable over [a; b] :

Consequence :

Let f : [a; b] �! R be a continuous function on [a; b], then f is integrable sur
[a; b]. We consider the following uniform subdivision ((xi+1 � xi) = constant) :

dn = (x0 = a; x1 = a+
b� a
n

; x2 = a+ 2
b� a
n

; :::; xi = a+ i
b� a
n

; :::; xn = b):
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It is an arithmetic sequence with a common di¤erence r =
b� a
n

= �(dn) =

xi+1 � xi: We take ci = xi = a+ i
b� a
n

:

�(f; dn) =
n�1P
i=0

f(ci)(xi+1 � xi) =
n�1P
i=0

f(xi)

�
b� a
n

�
=

�
b� a
n

�
n�1P
i=0

f(a+ i
b� a
n

);

then

lim
n�!+1

�(f; dn) = lim
�(dn)�!0

�(f; dn) =

bZ
a

f(x)dx;

hence

lim
n�!+1

�
b� a
n

� n�1X
i=0

f(a+ i
b� a
n

) =

bZ
a

f(x)dx:

Conclusion :

f continuous on [a; b] =)
bZ
a

f(x)dx = lim
n�!+1

�
b� a
n

� n�1X
i=0

f(a+ i
b� a
n

):

Special case : if a = 0 and b = 1; then

1Z
0

f(x)dx = lim
n�!+1

1

n

n�1X
i=0

f(
i

n
):

Example 15 Using the de�nition, calculate the following integral :
bZ
a

kx dx = lim
n�!+1

�
b� a
n

�
n�1P
i=0

k(a+ i
b� a
n

)

= k(b� a) lim
n�!+1

1

n

n�1P
i=0

(a+ i
b� a
n

)

= k(b� a) lim
n�!+1

1

n
(
n

2
)

�
a+ a+ (

n� 1
n

)(b� a)
�

= k(b� a)(b+ a
2
) =

k

2
(b2 � a2):

Theorem 16 Any function f : [a; b] �! R monotonous is integrable on [a; b] :

Theorem 17 If a bounded function f : [a; b] �! R is continuous on [a; b] except
at a �nite number of points of [a; b] ; then f is integrable on [a; b] :
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Example 18

4Z
0

[x] dx = 0 + 1(2� 1) + 2(3� 2) + 3(4� 3) = 6:

The �oor function [x] is not continuous at the points : 1; 2; 3 2 [0; 4] :

1.1.6 Properties of the integral

Property 1 :

- If a < b; then

bZ
a

f(x)dx = �
aZ
b

f(x)dx:

- If a = b; then

bZ
a

f(x)dx = 0:

Property 2 :
If f is an integrable function on [a; b] and if 8x 2 [a; b] ; f(x) � 0; then

bZ
a

f(x)dx � 0:

Property 3 :
If f and g are integrable functions on [a; b], then the function (f + g) is

integrable on [a; b] and we have

bZ
a

(f + g)(x)dx =

bZ
a

f(x)dx+

bZ
a

g(x)dx:

Property 4 :
If f is an integrable function on [a; b], then the function �f (� 2 R) is

integrable on [a; b] and we have

bZ
a

�f(x)dx = �

bZ
a

f(x)dx:

Remark 19 From propositions 3 and 4, it follows that the set of functions
integrable over [a; b] is a vector space on R denoted R [a; b] :

Property 5 :
If f and g are integrable functions on [a; b] and if 8x 2 [a; b], f(x) � g(x);

then

bZ
a

f(x)dx �
bZ
a

g(x)dx:

Property 6 :
If f is an integrable function on [a; b], then f is integrable over each interval

[�; �] � [a; b] :
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Property 7 :
1) Let c 2 ]a; b[ : If f is integrable separately over [a; c] and [c; b] ; then f is

integrable on [a; b] :

2) If f is integrable on [a; b] and c 2 ]a; b[, then
bZ
a

f(x)dx =

cZ
a

f(x)dx +

bZ
c

f(x)dx:

Property 8 :
If f is an integrable function on [a; b], then jf j is integrable on [a; b] and we

have

������
bZ
a

f(x)dx

������ �
bZ
a

jf(x)j dx:

Property 9 :
If f and g are integrable functions on [a; b], then the function (f:g) is inte-

grable on [a; b].

Theorem 20 (Schwarz inequality)
Let f and g be two integrable functions on [a; b], then0@ bZ

a

f(x)g(x)dx

1A2

�
bZ
a

f2(x)dx:

bZ
a

g2(x)dx:

Theorem 21 (Mean Value Formula)
Let f and g be two integrable functions on [a; b], g having a constant sign on

[a; b] (g � 0 or g � 0). We set M = sup
x2[a;b]

f(x) and m = inf
x2[a;b]

f(x):

Then, there exists � 2 [m;M ] =
bZ
a

f(x)g(x)dx = �

bZ
a

g(x)dx:

If moreover f is continuous, there exists c 2 [a; b] such that � = f(c);

i.e.

bZ
a

f(x)g(x)dx = f(c)

bZ
a

g(x)dx:

Example 22 Using the mean value formula, calculate the following limit :

lim
x�!0

kxZ
x

cos t

t
dt; k > 0:
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We set f(t) = cos t and g(t) =
1

t
: The functions f and g are continuous

on [x; kx] (x 6= 0); then f and g are integrable on [x; kx] : The function g has
a constant sign on [x; kx] ; then from the mean value formula, there exists c 2
[x; kx] such that

lim
x�!0

kxZ
x

cos t

t
dt = lim

x�!0
cos c

kxZ
x

1

t
dt = lim

x�!0
cos c: [ln jtj]kxx = lim

x�!0
cos c: ln

����kxx
����

= lim
c�!0

cos c: ln jkj = ln k:

1.2 Integrals and antiderivatives

Let f : [a; b] �! R be an integrable function on [a; b] and c 2 [a; b] be a �xed

point. We consider the function F : [a; b] �! R such that F (x) =
xZ
c

f(t)dt:

Theorem 23 1) The function F is uniformly continuous on [a; b] :
2) If f is continuous on [a; b] ; then F is derivable on [a; b] and 8x 2 [a; b] ;

F 0(x) = f(x):

1.2.1 Antiderivatives

De�nition 24 Let a function f : [a; b] �! R: We say that a derivable function
F : [a; b] �! R is an antiderivative of f if 8x 2 [a; b] ; F 0(x) = f(x):

Proposition 25 Let F1 and F2 two antiderivatives of f . Then (F1 � F2) is
constant.

Indeed, (F1 � F2)0 = F 01 � F 02 = f � f = 0 =) F1 � F2 = k; (k 2 R):

Conclusion :
If F is an antiderivaitive of f , then F is not unique because for all k 2 R;

F + k is also an antiderivative of f:

Theorem 26 Every continuous function f : [a; b] �! R, has an antiderivative.

The function F : [a; b] �! R such that F (x) =
xZ
c

f(t)dt; (c 2 [a; b] a �xed

point) is an antiderivative of f:
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Theorem 27 Let f be a continuous function on [a; b] and G any antiderivative

of f . Then,

bZ
a

f(x)dx = G(b)�G(a):

Remark 28 1) In the de�nition of the antiderivative, we can take instead of
[a; b] ; any interval I of R, in particular I = R:
2) If F is an antiderivative of f on [a; b], this does not imply that f is

continuous on [a; b] :

Example 29 Let the function de�ned by

F (x) =

(
x2 sin

1

x
; x 6= 0;

0; x = 0:

F 0(0) = lim
x�!0

F (x)� F (0)
x� 0 = lim

x�!0

x2 sin
1

x
x

= lim
x�!0

x sin
1

x
= 0:

Then, F is derivable on R and its derivative is the following function

F 0(x) = f(x) =

(
2x sin

1

x
� cos 1

x
; x 6= 0;

0; x = 0:

Hence, F is an antidirivative of f: However, f is not continuous at the point

0: Indeed, lim
x�!0

f(x) = lim
x�!0

�
2x sin

1

x
� cos 1

x

�
does�not exist, since lim

x�!0
cos

1

x
does not exist.

1.2.2 Inde�nite integral

De�nition 30 Let the function f : [a; b] �! R: The set of all antiderivatives of

the function f is called the inde�nite integral of f and is denoted by
Z
f(x)dx:

Thus, if F is any antiderivative of f , we haveZ
f(x)dx = fF (x) + C; C 2 Rg :

We will write Z
f(x)dx = F (x) + C; C 2 R:
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Theorem 31 (Properties of the inde�nite integral)
If f and g have antiderivatives, then (f + g) and �f (� 2 R) also have

antiderivatives, and we have

1)

Z
(f + g)(x)dx =

Z
f(x)dx+

Z
g(x)dx:

2)

Z
�f(x)dx = �

Z
f(x)dx:

Example 32 1)
Z
cos(x)dx = sin(x) + C; C 2 R:

2)

Z
1

x
dx = ln jxj+ C; C 2 R:

3)

Z
xndx =

xn+1

n+ 1
+ C; C 2 R; n 6= �1:

4)

Z
e3xdx =

e3x

3
+ C; C 2 R:

5)

Z
sin2(x)dx =

1

2

Z
(1� cos(2x))dx = x

2
� sin(2x)

4
+ C; C 2 R:

Remark 33 Let f be a continuous function on [a; b] and let two derivable func-

tions u; v : [�; �] �! [a; b] : Then, the function g(x) =

v(x)Z
u(x)

f(t)dt is derivable

and we have g0x) = f(v(x)):v0(x)� f(u(x)):u0(x).
Indeed, let F be an antiderivative of f (i.e. F 0 = f):

g(x) = F (v(x))� F (u(x)) =) g0x) = F 0(v(x)):v0(x)� F 0(u(x)):u0(x);
then, g0x) = f(v(x)):v0(x)� f(u(x)):u0(x).

1.3 General methods of integration

1.3.1 Integration by parts

Theorem 34 Let u and v be two continuously derivable functions on [a; b].
Then, we have

bZ
a

u(x):v0(x)dx = [u(x):v(x)]
b
a �

bZ
a

u0(x):v(x)dx;

where [u(x):v(x)]ba = u(b):v(b)� u(a):v(a):
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Indeed, (u:v)0 = u:v0 + u0:v;

then,

bZ
a

(u(x):v(x))0dx = [u(x):v(x)]
b
a =

bZ
a

u(x):v0(x)dx+

bZ
a

u0(x):v(x)dx;

hence,

bZ
a

u(x):v0(x)dx = [u(x):v(x)]
b
a �

bZ
a

u0(x):v(x)dx:

Example 35 Calculate I =

1Z
0

arctan(x)dx:

We set�
u(x) = arctan(x)
v0(x) = 1

=)
(
u0(x) =

1

1 + x2
;

v(x) = x;

then,

I =

1Z
0

arctan(x)dx = [x: arctan(x):]
1
0 �

1Z
0

x

1 + x2
dx =

�

4
� 1
2

1Z
0

2x

1 + x2
dx;

I =
�

4
� 1
2

�
ln(1 + x2)

�1
0
=
�

4
� 1
2
ln(2):

Example 36 Calculate J =

Z
x2 ln(x)dx:

We set�
u(x) = ln(x)
v0(x) = x2

=)

8><>:
u0(x) =

1

x
;

v(x) =
x3

3
;

J =

Z
x2 ln(x)dx =

x3

3
ln(x)�

Z
x2

3
dx =

x3

3
ln(x)� x

3

9
+ C; C 2 R:

1.3.2 Change of variable

Theorem 37 Let f : [a; b] �! R be a continuous function and ' : [�; �] �!
[a; b] be a continuously derivable function such that '(�) = a and '(�) = b:
Then, the function g : [�; �] �! R such that g(t) = f('(t)):'0(t) is integrable

on [�; �] and we have

bZ
a

f(x)dx =

�Z
�

f('(t)):'0(t)dt:
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Remark 38 We set x = '(t) =) x0 = '0(t) =) dx

dt
= '0(t); then

dx = '0(t)dt:

Example 39 Calculate I =

1Z
0

p
1� x2dx:

We set x = sin t =) dx = cos t:dt;

if x = 0 =) t = 0;

if x = 1 =) t =
�

2
;

then, I =

�
2Z
0

p
cos2(t) cos(t)dt =

�
2Z
0

jcos(t)j cos(t)dt =

�
2Z
0

cos2(t)dt:

We have cos(2t) = 2 cos2(t)� 1 =) cos2(t) =
cos(2t) + 1

2
;

hence I =

�
2Z
0

cos2(t)dt =

�
2Z
0

cos(2t) + 1

2
dt =

1

2

�
sin(2t)

2
+ t

��
2

0

=
�

4
:

Example 40 Calculate J =

Z
xp
x+ 1

dx:

We set t =
p
x+ 1 =) x = t2 � 1 =) dx = 2t:dt;

then J = 2

Z
(t2 � 1)dt = 2( t

3

3
� t) + C; C 2 R;

hence J = 2

 p
(x+ 1)3

3
�
p
x+ 1

!
+ C; C 2 R:

Example 41 We set t = lnx =) dt =
1

x
dx;

I1 =

Z
lnx

x
dx =

Z
t:dt =

t2

2
+ C =

ln2 x

2
+ C; C 2 R:

I2 =

Z
1

x lnx
dx =

Z
dt

t
= ln jtj+ C = ln jlnxj+ C; C 2 R:
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Example 42 K =

Z
sin2 x cos3 xdx =

Z
sin2 x(1� sin2 x) cosxdx

=

Z
(sin2 x� sin4 x) cosx:dx;

we set t = sinx =) dt = cosx:dx;

K =

Z
(t2 � t4)dt = t3

3
� t

5

5
+ C =

sin3 x

3
� sin

5 x

5
+ C; C 2 R:

1.3.3 Partial fraction decomposition

Example 43 Calculate I =
Z

1

x(x+ 1)(x+ 2)
dx:

We decompose the fraction into partial fractions :

1

x(x+ 1)(x+ 2)
=
A

x
+

B

x+ 1
+

C

x+ 2

=
A(x+ 1)(x+ 2) +Bx(x+ 2) + Cx(x+ 1)

x(x+ 1)(x+ 2)

=
(A+B + C)x2 + (3A+ 2B + C)x+ 2A

x(x+ 1)(x+ 2)
;

by identi�cation, we obtain8<: A+B + C = 0
3A+ 2B + C = 0

2A = 1
=)

8>><>>:
A =

1

2
;

B = �1;
C =

1

2
;

then I =
Z

1

x(x+ 1)(x+ 2)
dx =

Z �
1

2
(
1

x
)� 1

x+ 1
+
1

2
(
1

x+ 2
)

�
dx;

hence I =
1

2
ln jxj � ln jx+ 1j+ 1

2
ln jx+ 2j+ C; C 2 R:

Example 44 Calculate I =

Z
1

x(1 + x2)
dx:

We decompose the fraction into partial fractions :

1

x(1 + x2)
=
A

x
+
Bx+ C

1 + x2
=
A(1 + x2) + (Bx+ C)x

x(1 + x2)
=
(A+B)x2 + Cx+A

x(1 + x2)
;

by identi�cation, we obtain8<: A+B = 0
C = 0
A = 1

=)

8<: A = 1;
B = �1;
C = 0;
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then I =
Z

1

x(1 + x2)
dx =

Z �
1

x
� x

1 + x2

�
dx = ln jxj � 1

2
ln(1 + x2) + C;

C 2 R:

Remark 45 1) If the fraction
P (x)

Q(x)
Is such that the degree of P is less than

the degree of Q (i.e. a proper fraction), we perform the decomposition of the
fraction into partial fractions (if possible).

2) If the fraction
P (x)

Q(x)
Is such that the degree of P is greater than or equal

to the degree of Q, we �rst perform the Euclidean division, we obtain
P (x)

Q(x)
= A(x) +

R(x)

Q(x)
such that the deg R(x) is less than the deg Q(x):

Then, we decompose the fraction
R(x)

Q(x)
into partial fractions (if possible).

Example 46 Calculate I =

Z
x3

x2 � 1dx:

I =

Z �
x+

x

x2 � 1

�
dx =

x2

2
+
1

2
ln
��x2 � 1��+ C; C 2 R:

1.3.4 Antiderivatives of rational functions

1) I =

Z
1

x2 + a2
dx; a 6= 0:

I =

Z
1

a2(
x2

a2
+ 1)

dx =
1

a2

Z
1

(
x

a
)2 + 1

dx =
1

a
arctan(

x

a
) + C; C 2 R:

(We can make the change of variable t =
x

a
:)

2) J =

Z
1

x2 � a2 dx; a 6= 0:

J =

Z
1

(x+ a)(x� a)dx:

We decompose the fraction into partial fractions :

1

(x+ a)(x� a) =
A

x+ a
+

B

x� a =
(A+B)x�Aa+Ba
(x� a)(x+ a) ;

by identi�cation, we obtain

�
A+B = 0

�Aa+Ba = 1
=)

8><>:
A = � 1

2a
;

B =
1

2a
;
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then

J =

Z
1

(x+ a)(x� a)dx = �
1

2a

Z
1

x+ a
dx+

1

2a

Z
1

x� adx;

= � 1

2a
ln jx+ aj+ 1

2a
ln jx� aj+ C; C 2 R

=
1

2a
ln

����x� ax+ a

����+ C; C 2 R:

Calculation of integrals of the type : I =
Z

mx+ n

ax2 + bx+ c
dx; a 6= 0:

1) If m = 0, then I =
Z

n

ax2 + bx+ c
dx

- if ax2 + bx + c = 0 has two real roots, we factor, then we decompose the
fraction into partial fractions.

- If ax2 + bx+ c = 0 has a double root, we factor, then we integrate.

- If ax2 + bx + c = 0 has no real roots, we rewrite this polynomial in the
form X2 +A2 ou X2 �A2:

Example 47 Calculate I =

Z
1

x2 + 2x+ 5
dx:

I =

Z
1

(x+ 1)2 + 4
dx =

1

4

Z
1

(
x+ 1

2
)2 + 1

dx;

we set t =
x+ 1

2
=) dt =

1

2
dx;

then

I =
1

2

Z
1

t2 + 1
dt =

1

2
arctan(t) + C; C 2 R;

=
1

2
arctan(

x+ 1

2
) + C; C 2 R:

2) If m 6= 0; we write the integral in the following form

Z
mx+ n

ax2 + bx+ c
dx =

Z m

2a
(2ax+ b) + (n� mb

2a
)

ax2 + bx+ c
dx

=
m

2a

Z
(2ax+ b)

ax2 + bx+ c
dx+ (n� mb

2a
)

Z
1

ax2 + bx+ c
dx

=
m

2a
ln
��ax2 + bx+ c��+ (n� mb

2a
)

Z
1

ax2 + bx+ c
dx:
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Example 48 Calculate I =

Z
x+ 1

x2 + x+ 1
dx:

I =
1

2

Z
2(x+ 1)

x2 + x+ 1
dx =

1

2

Z �
2x+ 1

x2 + x+ 1
+

1

x2 + x+ 1

�
dx

=
1

2
ln
��x2 + x+ 1��+ 1

2

Z
1

x2 + x+ 1
dx:

Z
1

x2 + x+ 1
dx =

Z
1�

x+ 1
2

�2
+
3

4

dx =
4

3

Z
1�

2x+1p
3

�2
+ 1

dx

=
2p
3
arctan

�
2x+ 1p

3

�
+ C; C 2 R:

(we can make the change of variable t =
2x+ 1p

3
):

Therefore, I =
1

2
ln
��x2 + x+ 1��+ 1p

3
arctan

�
2x+ 1p

3

�
+ C; C 2 R:

Calculation of integrals of the type :
Z
R(sinx; cosx)dx;

Such that R is a rational function.

On pose t = tan
x

2
;

dt

dx
=
1

2

�
1 + tan2

x

2

�
=) dx =

2dt

1 + t2
;

sinx = sin 2(
x

2
) = 2 sin

x

2
: cos

x

2
=

2 sin
x

2
: cos x2

cos2
�
x
2

�
+ sin2

�
x
2

� = 2t

1 + t2
;

thus, sinx =
2t

1 + t2
:

cosx = cos 2(
x

2
) = cos2

�x
2

�
� sin2

�x
2

�
: =

cos2
�
x
2

�
� sin2

�
x
2

�
cos2

�
x
2

�
+ sin2

�
x
2

� = 1� t2
1 + t2

;

therefore, cosx =
1� t2
1 + t2

:
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Example 49 Calculate I =

Z
1

sinx
dx:

We set t = tan
x

2
;

then, dx =
2dt

1 + t2
and sinx =

2t

1 + t2
:

I =

Z
1
2t

1 + t2

�
2dt

1 + t2

�
=

Z
dt

t
= ln jtj+ C; C 2 R;

hence, I = ln
���tan x

2

���+ C; C 2 R:

Example 50 Calculate I =

Z
1

1 + sinx+ cosx
dx:

We set t = tan
x

2
;

then, dx =
2dt

1 + t2
; sinx =

2t

1 + t2
et cosx =

1� t2
1 + t2

:

I =

Z
1

1 +
2t

1 + t2
+
1� t2
1 + t2

�
2dt

1 + t2

�
=

Z
dt

1 + t
= ln j1 + tj+ C; C 2 R;

hence, I = ln
���1 + tan x

2

���+ C; C 2 R:

Calculation of integrals of the type :
Z
R(ex)dx:

such that R is a rational function.

We set t = ex;

dt

dx
= ex = t =) dx =

dt

t
:

Example 51 Calculate I =

Z
dx

1 + ex
:

We set t = ex =) dx =
dt

t
;

I =

Z
dt

t(1 + t)
=

Z �
1

t
� 1

1 + t

�
dt;

I = ln jtj � ln j1 + tj+ C; C 2 R;
then, I = ln jexj � ln j1 + exj+ C; C 2 R;
hence, I = x� ln(1 + ex) + C; C 2 R:
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1.4 Exercises

Exercise 52 1) Calculate I =
Z

t

t2 + 2t� 3dt:

2) Deduce J =
Z

ex

ex � 3e�x + 2dx:

Solution :
1) I =

Z
t

t2 + 2t� 3dt =
Z

t

(t+ 3)(t� 1)dt:

We decompose the fraction into partial fractions :

t

(t+ 3)(t� 1) =
A

t+ 3
+

B

t� 1 ;

we obtain

I =

Z �
3

4(t+ 3)
+

1

4(t� 1)

�
dt;

then, I =
3

4
ln jt+ 3j+ 1

4
ln jt� 1j+ C; C 2 R:

2) J =

Z
ex

ex � 3e�x + 2dx:

We set t = ex;

dt

dx
= ex = t =) dx =

dt

t
;

J =

Z
t

t� 3t�1 + 2
dt

t
=

Z
t

t2 + 2t� 3dt = I;

then, J =
3

4
ln jt+ 3j+ 1

4
ln jt� 1j+ C; C 2 R;

hence, J =
3

4
ln(ex + 3) +

1

4
ln jex � 1j+ C; C 2 R:

Exercise 53 1) Calculate the integral I =
Z

dx

x(x3 + 1)
:

2) Deduce the integral J =
Z

x2 lnx

(x3 + 1)2
dx:

Solution :
1) I =

Z
dx

x(x3 + 1)
:

We decompose the fraction into partial fractions :
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1

x(x3 + 1)
=

1

x(x+ 1)(x2 � x+ 1) =
A

x
+

B

x+ 1
+

Cx+D

x2 � x+ 1

=
A(x3 + 1) +Bx(x2 � x+ 1) + (Cx+D)x(x+ 1)

x(x+ 1)(x2 � x+ 1)

=
(A+B + C)x3 + (�B + C +D)x2 + (B +D)x+A

x(x3 + 1)
;

by identi�cation, we obtain

8>><>>:
A+B + C = 0
�B + C +D = 0
B +D = 0
A = 1

()

8>>>>>>>>><>>>>>>>>>:

A = 1;

B = �1
3
;

C = �2
3
;

D =
1

3
;

then

I =

Z
dx

x(x3 + 1)
=

Z �
1

x
� 1
3

1

x+ 1
� 1
3

2x� 1
x2 � x+ 1

�
dx;

I =

Z
1

x
dx� 1

3

Z
1

x+ 1
dx� 1

3

Z
2x� 1

x2 � x+ 1dx;

I = ln jxj � 1
3
ln jx+ 1j � 1

3
ln
��x2 � x+ 1��+ C; C 2 R;

hence, I = ln jxj � 1
3
ln
��x3 + 1��+ C; C 2 R:

2) We deduce the integral J =
Z

x2 lnx

(x3 + 1)2
dx:

We perform integration by parts, we set8<:
U = lnx

V 0 =
x2

(x3 + 1)2
=)

8>><>>:
U 0 =

1

x
;

V = �1
3

1

x3 + 1
;

then

J =

Z
x2 lnx

(x3 + 1)2
dx = � lnx

3(x3 + 1)
+
1

3

Z
1

x(x3 + 1)
dx;

J = � lnx

3(x3 + 1)
+
1

3
I;

hence J = � lnx

3(x3 + 1)
+
1

3
ln jxj � 1

9
ln
��x3 + 1��+ C; C 2 R:
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Exercise 54 1) Calculate the integral I =
Z

2

(1 + t)(1 + t2)
dt:

2) Deduce the integral J =
Z

sinx

1 + sinx� cosxdx:

Solution :
1) I =

Z
2

(1 + t)(1 + t2)
dt:

We decompose the fraction into partial fractions :

2

(1 + t)(1 + t2)
=

A

1 + t
+
Bt+ C

1 + t2
=
A(1 + t2) + (Bt+ C)(1 + t)

(1 + t)(1 + t2)

=
(A+B)t2 + (B + C)t+A+ C

(1 + t)(1 + t2)
;

by identi�cation, we obtain8<: A+B = 0
B + C = 0
A+ C = 2

()

8<: A = 1;
B = �1;
C = 1;

then

I =

Z
2

(1 + t)(1 + t2)
dt =

Z �
1

1 + t
+
�t+ 1
1 + t2

�
dt;

I =

Z �
1

1 + t
� t

1 + t2
+

1

1 + t2

�
dt =

Z
1

1 + t
dt�

Z
t

1 + t2
dt+

Z
1

1 + t2
dt;

hence, I = ln j1 + tj � 1
2
ln
�
1 + t2

�
+ arctan t+ C; C 2 R:

2) We deduce the integral J =
Z

sinx

1 + sinx� cosxdx:

We make a change of variable, we set t = tan
x

2
;

with this change of variable, we obtain

sinx =
2t

1 + t2
; cosx =

1� t2
1 + t2

and dx =
2dt

1 + t2
;

then

J =

Z 2t

1 + t2

1 +
2t

1 + t2
� 1� t

2

1 + t2

2dt
1+t2 =

Z
2

(1 + t)(1 + t2)
dt = I;

hence J = ln j1 + tj � 1
2
ln
�
1 + t2

�
+ arctan t+ C; C 2 R;



1.4. EXERCISES 21

thus J = ln
���1 + tan x

2

���� 1
2
ln
�
1 + tan2

�x
2

��
+
x

2
+ C; C 2 R:

Exercise 55 1) Calculate I =
Z 1

0

ln(x+ t)dx , t 2]0;+1[:

2) Deduce Jn =
Z 1

0

ln[(x+ 1)(x+ 2):::::(x+ n)]dx , n 2 N�:

3) Calculate lim
n!+1

Jn
(n+ 1)2

:

Solution :

1) I =

Z 1

0

ln(x+ t)dx, t 2]0;+1[:

We perform integration by parts, we set�
U = ln(x+ t)
V 0 = 1

=)
(
U 0 =

1

x+ t
;

V = x;

then

J = [x ln(x+ t)]
x=1
x=0 �

Z 1

0

x

x+ t
dx = ln(1 + t)�

Z 1

0

x+ t� t
x+ t

dx

= ln(1 + t)�
Z 1

0

�
1� t

x+ t

�
dx = ln(1 + t)� [x� t ln(x+ t)]x=1x=0

= ln(1 + t)� 1 + t ln(1 + t)� t ln t;

hence, J = (1 + t) ln(1 + t)� t ln t� 1:

2) We deduce Jn =
Z 1

0

ln[(x+ 1)(x+ 2):::::(x+ n)]dx, n 2 N�:

Jn =

Z 1

0

ln[(x+ 1)(x+ 2):::::(x+ n)]dx

=

Z 1

0

ln(x+ 1)dx+

Z 1

0

ln(x+ 2)dx+ :::::+

Z 1

0

ln(x+ n)dx:

According to the �rst question, we obtain

Jn = (2 ln 2� 1)+ (3 ln 3� 2 ln 2� 1)+ :::::+ ((n+1) ln(n+1)� n lnn� 1);

then Jn = (n+ 1) ln(n+ 1)� n:

3) we calculate lim
n!+1

Jn
(n+ 1)2

:
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lim
n!+1

Jn
(n+ 1)2

= lim
n!+1

(n+ 1) ln(n+ 1)� n
(n+ 1)2

;

lim
n!+1

Jn
(n+ 1)2

= lim
n!+1

�
ln(n+ 1)

(n+ 1)
� n

(n+ 1)2

�
= 0:



Chapter 2

Di¤erential equations of the
�rst and second order

2.1 Di¤erential equations of the �rst order

De�nition 56 A di¤erential equation of the �rst order is de�ned as any equa-
tion of the form

y0 = f(x; y) (I)

where f : D � R2 �! R is a function and y is a function of the variable x:

The solution of the di¤erential equation :
Let I be an interval of R. The function y : I �! R is a solution of the

di¤erential equation (I) if it satis�es the following conditions :
1) The graph of y; Gy � D, i.e. 8x 2 I; (x; y(x)) 2 D:
2) y is a derivable function and we have 8x 2 I; y0(x) = f(x; y(x)):

In this chapter, we will study �ve types of �rst-order di¤erential equations.

2.1.1 Di¤erential equations with separable variables

De�nition 57 Di¤erential equations with separable variables are written in the
following form :

y0 = f(x):g(y) (1)

where f : I �! R and g : J �! R are two continuous functions with I and
J two intervals of R:

23
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Solving method :

We have y0 =
dy

dx
= f(x)g(y);

then,
dy

g(y)
= f(x)dx;

hence,
Z

dy

g(y)
=

Z
f(x)dx, with g(y) 6= 0:

We integrate to �nd y = '(x) which is the solution of the di¤erential equation
(1).

Exercise 58 Solve the following di¤erential equations :

1) (x+ 1)y0 + y = 0:

2) y0 sinx� y cosx = 0:

3) y0 +
xy

1� x2 = 0; satisfying y (0) = 1:

Solution :
1) (x+ 1)y0 + y = 0:::::(E):

Remark : y = 0 is a solution of (E):

If y 6= 0, (x+ 1)y0 + y = 0() y0 = � 1

x+ 1
y

() dy

dx
= � 1

x+ 1
y () dy

y
= � 1

x+ 1
dx;

thenZ
dy

y
= �

Z
1

x+ 1
dx =) ln jyj = � ln jx+ 1j+C = ln 1

jx+ 1j +C; C 2 R;

hence, jyj = 1

jx+ 1je
C =) y = �eC 1

x+ 1
=) y =

K

x+ 1
; K 2 R�:

Since y = 0 is a solution of (E); then the general solution of (E) is

y =
K

x+ 1
; K 2 R:

*****

2) y0 sinx� y cosx = 0:::::(F ):

Remark : y = 0 is a solution of (F ):

If y 6= 0, y0 sinx� y cosx = 0() y0 =
cosx

sinx
y
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() dy

dx
=
cosx

sinx
y () dy

y
=
cosx

sinx
dx;

thenZ
dy

y
=

Z
cosx

sinx
dx =) ln jyj = ln jsinxj+ C; C 2 R;

hence, jyj = jsinxj eC =) y = �eC sinx =) y = K sinx; K 2 R�:

Since y = 0 is a solution of (F ); then the general solution of (F ) is

y = K sinx; K 2 R:

*****

3) y0 +
xy

1� x2 = 0.::::(G):

Remark : y = 0 is a solution of (G):

If y 6= 0, y0 + xy

1� x2 = 0() y0 = � x

1� x2 y

() dy

dx
= � x

1� x2 y ()
dy

y
=

x

x2 � 1dx;

thenZ
dy

y
=

Z
x

x2 � 1dx =) ln jyj = 1

2
ln
��x2 � 1��+ C; C 2 R;

hence, jyj =
p
jx2 � 1jeC =) y = �eC

p
jx2 � 1j =) y = K

p
jx2 � 1j; K 2

R�:

Since y = 0 is a solution of (G), then the general solution of (G) is

y = K
p
jx2 � 1j; K 2 R:

We look for the solution that satis�es the condition y(0) = 1:

y(0) = 1() K = 1,

thus, y =
p
jx2 � 1j:

2.1.2 Homogeneous di¤erential equations

De�nition 59 The homogeneous di¤erential equations are written in the fol-
lowing form :

y0 = f
�y
x

�
(2)

where f : I �! R is a continuous function.
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Solving method :

y0 = f
�y
x

�
;

we set t =
y

x
() y = tx; then y0 = t0x+ t:

We substitute into the equation (2) :

t0x+ t = f(t)() t0x = f(t)� t() t0 = (f(t)� t) 1
x
;

thus, we obtain a di¤erential equation with separable variables,

dt

dx
= (f(t)� t) 1

x
:

If f(t)� t 6= 0, then we have
Z

dt

f(t)� t =
Z
1

x
dx = ln jxj+ C;

by integrating, we obtain t = '(x) and then, y = x'(x) is the solution of
the equation (2):

Singular solutions of the homogeneous equation :
If f(t)� t = 0, then we have:

let t0 be a root of this equation, then t = t0 is a solution to the di¤erential
equation
t0x = f(t)� t:

Indeed, f(t0)� t0 = 0 and since t0 is a constant, then t0 = (t0)0 = 0;

hence, y = xt0 is a solution of the equation (2):

These solutions are called the singular solutions of the homogeneous
equation.

Exercise 60 Solve the following di¤erential equations :
1) x (y0 � y

x
)� y + x = 0:

2) y0(2
p
xy � x) + y = 0, on ]0;+1[ satisfying y(1) = 1:

Solution :
1) x (y0 � y

x
)� y + x = 0::::(E):

x (y0 � y

x
)� y + x = 0() y0 = 2

y

x
� 1:

We set t =
y

x
() y = tx; then y0 = t0x+ t;

t0x+ t = 2
y

x
� 1 = 2t� 1 =) t0x = t� 1;
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thus t0 =
1

x
(t� 1) : It is a di¤erential equation with separable variables,

so,
dt

dx
=
1

x
(t� 1)() dt

t� 1 =
dx

x
if t� 1 6= 0;

then,
Z

dt

t� 1 =
Z
dx

x
=) ln jt� 1j = ln jxj+ C; C 2 R;

thus, jt� 1j = jxj eC =) t� 1 = �eCx =) t = Kx+ 1; K 2 R�:
Therefore, y = tx = Kx2 + x; K 2 R�:

The singular solutions of (E) :

If t� 1 = 0 =) t = 1 =) y

x
= 1;

then y = x : It is the singular solution of the equation (E):

*****

2) y0(2
p
xy � x) + y = 0, on ]0;+1[ satisfying y(1) = 1::::(F ):

y0(2
p
xy � x) + y = 0() y0

�
2

r
y

x
� 1
�
+
y

x
= 0

() y0 = �
y
x

2
p

y
x � 1

with 2

r
y

x
� 1 6= 0;

we set t =
y

x
() y = tx; then y0 = t0x+ t;

t0x+ t = �
y
x

2
p

y
x � 1

=
�t

2
p
t� 1

=) t0x =
�2t

p
t

2
p
t� 1

;

thus, t0 =
1

x

�
�2t

p
t

2
p
t� 1

�
: t is a di¤erential equation with separable variables,

then,
dt

dx
=
1

x

�
�2t

p
t

2
p
t� 1

�
()

�
2
p
t� 1

�2t
p
t

�
dt =

dx

x
if t 6= 0;

henceZ �
2
p
t� 1

�2t
p
t

�
dt =

Z
dx

x
=)

Z �
�1
t
+

1

2t
p
t

�
dt =

Z
dx

x

=) � ln t� 1p
t
= lnx+ C; C 2 R

=) ln(xt) = � 1p
t
� C =) xt = e

� 1p
t
�C
;

therefore, y = e�
p

x
y�C :

The singular solution of the equation (F ) :
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if t = 0 =) y = 0 : It is the singular solution of the equation (F ):

We seek the solution y that satis�es the condition y(1) = 1;

y(1) = 1() e�1�C = 1() C = �1;

then, y = e�
p

x
y+1:

2.1.3 Linear di¤erential equations of the �rst order

De�nition 61 The linear di¤erential equations of the �rst order are written in
the following form :

y0 + a(x)y = b(x) (E)

where a : I �! R and b : I �! R are two continuous functions.

Solving method :

The general solution of (E) : yG = yp + y;

where yp is a particular solution of (E);

and y is the general solution of the equation without the right-hand side
(E0).

(E0) : y
0 + a(x)y = 0 : it is a di¤erential equation with separable variables.

If the particular solution yp is not obvious, we apply the method of variation
of the constant, which involves replacing the constant K in the solution y of the
equation without the right-hand side, by the function K(x); then, we search for
K(x) by substituting into the equation (E):

Exercise 62 Solve the following di¤erential equations :

1) y0 + xy = x:

2) y0 � y

x
= lnx:

3) x(x2 + 1)y0 � 2y = x3(x� 1)e�x:

Solution :
1) y0 + xy = x::::::(E):

The general solution of (E) : yG = yp + y;

where yp is a particular solution of (E);

and y is the general solution of the equation without the right-hand side :
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(E0) : y
0 + xy = 0:

We notice that yp = 1 is a particular solution of (E):

We now seek the general solution of the equation without the right-hand
side :

(E0) : y
0 + xy = 0 : it is a di¤erential equation with separable variables.

We notice that y = 0 is a solution of (E0):

If y 6= 0; y0 + xy = 0() y0 = �xy

() dy

dx
= �xy () dy

y
= �xdx;

then,
Z
dy

y
= �

Z
xdx =) ln jyj = �x

2

2
+ C; C 2 R

=) jyj = e� x2

2 eC =) y = �eCe� x2

2

hence, y = Ke�
x2

2 ; K 2 R�:
Since y = 0 is a solution de (E0); then the solution of (E0) is

y = Ke�
x2

2 ; K 2 R:
Therefore the general solution of (E) is given by

yG = yp + y = 1 +Ke
� x2

2 ; K 2 R:

*****
2) y0 � y

x
= lnx:::(F ):

The general solution of (F ) is : yG = yp + y;

where yp is a particular solution of (F );

and y is the general solution of the equation without the right-hand side,
(F0) : y

0 � y

x
= 0:

Since the particular solution yp of (F ) is not obvious, we �rst look for the
general solution of the equation without the right-hand side :

(F0) : y
0 � y

x
= 0 : it is a di¤erential equation with separable variables.

We notice that y = 0 is a solution of (F0):

If y 6= 0; y0 � y

x
= 0() y0 =

y

x

() dy

dx
=
y

x
() dy

y
=
dx

x
;

then,
Z
dy

y
=

Z
dx

x
=) ln jyj = ln jxj+ C; C 2 R;
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hence, jyj = jxj eC =) y = �eCx =) y = Kx; K 2 R�:

Since y = 0 is a solution of (F0); then the general solution of (F0) is
y = Kx; K 2 R:

To �nd the particular solution, we apply the method of variation of
the constant (MVC). This method involves replacing the constant K with a
function K(x).

We set yG = K(x)x which is the general solution of (F );

then, y0G = K
0(x)x+K(x):

We replace yG and y0G in the equation (F ) to obtain K
0(x) :

K 0(x)x+K(x)� K(x)x
x

= lnx =) K 0(x) =
lnx

x
;

then, K(x) =
Z
lnx

x
dx:

We set U = lnx =) dU =
1

x
dx;

hence, K(x) =
Z
lnx

x
dx =

Z
UdU =

U2

2
+ C =

(lnx)2

2
+ C; C 2 R;

thus, yG = K(x)x =
(lnx) 2

2
x+ Cx:

*****

3) x(x2 + 1)y0 � 2y = x3(x� 1)e�x::::::(G):

Since the particular solution yp of (G) is not obvious, we �rst look for the
general solution of the equation without the right-hand side :

(G0) : x(x
2 + 1)y0 � 2y = 0 : it is a di¤erential equation with separable

variables.

We notice that y = 0 is a solution of (G0):

If y 6= 0; x(x2 + 1)y0 � 2y = 0() y0 =
2

x(x2 + 1)
y

() dy

dx
=

2

x(x2 + 1)
y () dy

y
=

2

x(x2 + 1)
dx:

By decomposing the fraction into partial fractions, we obtainZ
dy

y
=

Z
2

x(x2 + 1)
dx =

Z �
2

x
� 2x

x2 + 1

�
dx

=) ln jyj = 2 ln jxj � ln(x2 + 1) + C = ln x2

x2 + 1
+ C; C 2 R;
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hence, y =
Kx2

x2 + 1
; K 2 R:

To �nd the particular solution, we apply the method of variation of the
constant (MVC). This method involves replacing the constantK with a function
K(x).

We set yG =
K(x)x2

x2 + 1
;

then, y0G =
K 0(x)x2(x2 + 1) + 2xK(x)

(x2 + 1)2
:

We replace yG and y0G in the equation (G) to obtain K
0(x) :

x(x2 + 1)
K 0(x)x2(x2 + 1) + 2xK(x)

(x2 + 1)2
� 2K(x)x

2

x2 + 1
= x3(x� 1)e�x;

then, K 0(x) = (x� 1)e�x =) K(x) =

Z
(x� 1)e�xdx:

By performing integration by parts, we obtain

K(x) = �xe�x + C; C 2 R;

therefore, yG =
K(x)x2

x2 + 1
=
(�xe�x + C)x2

x2 + 1
=
�x3e�x
x2 + 1

+
Cx2

x2 + 1
:

Exercise 63 1) Calculate the following integral :

I =

Z
dx

(1 + x2)(1 + x)
:

2) Deduce the following �integral :

J =

Z
arctanx

(1 + x)2
dx:

3) Solve the following di¤erential equation, specifying its type :

(E) : (x+ 1)y0 + y =
arctanx

(1 + x)2
:

Solution :
1) Let the integral

I =

Z
dx

(1 + x2)(1 + x)
;

decomposing the fraction into partial fractions, we obtain :

I =

Z
dx

(1 + x2)(1 + x)
=

Z � 1
2

1 + x
+
� 1
2x+

1
2

1 + x2

�
dx

=
1

2
ln j1 + xj � 1

4
ln(1 + x2) +

1

2
arctanx+ C; C 2 R:
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2) We deduce the integral

J =

Z
arctanx

(1 + x)2
dx:

By performing integration by parts, we obtain

J =

Z
arctanx

(1 + x)2
dx = �arctanx

1 + x
+

Z
dx

(1 + x2)(1 + x)
= �arctanx

1 + x
+ I;

then

J = �arctanx
1 + x

+
1

2
ln j1 + xj � 1

4
ln(1 + x2) +

1

2
arctanx+ C; C 2 R:

3) Let the following di¤erential equation :

(E) : (x+ 1)y0 + y =
arctanx

(1 + x)2
;

it is a linear di¤erential equation of the �rst order, which we solve using the
method of variation of the constant. We �nd

y =
K(x)

1 + x
with K(x) = J;

hence

y = �arctanx
(1 + x)2

+
1

2

ln j1 + xj
1 + x

� 1
4

ln(1 + x2)

1 + x
+
1

2

arctanx

1 + x
+

C

1 + x
; C 2 R:

2.1.4 Bernoulli di¤erential equations

De�nition 64 Bernoulli di¤erential equations are written in the following form
:

y0 + a(x)y = b(x)yk; (E) k 2 Rr f0; 1g;

where a : I �! R and b : I �! R are two continuous functions.

Solving method :

We check if y = 0 is a solution of the equation (E):

If y 6= 0, we divide the equation (E) by yk, we obtain

y0y�k + a(x)y1�k = b(x) (E0):

We make the following variable change :
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Z = y1�k =) Z 0 = (1� k)y0y�k;

then, we substitute into (E0) to obtain

Z 0

1� k + a(x)Z = b(x) : it is a linear di¤erential equation.

If Z is a solution of this equation, then y = Z
1

1�k is the solution of the
equation (E):

Exercise 65 Solve the following di¤erential equations :

1) xy0 + y = y2 lnx:

2) (1� x3)y0 + 3x2y = �y2

Solution :
1) xy0 + y = y2 lnx::::::::(E):

Remark : y = 0 is a solution of (E):

If y 6= 0; we divide the equation (E) by y2, we obtain

xy0y�2 + y�1 = lnx::::::::(E0):

We set Z = y�1, then Z 0 = �y0y�2:

We substitute into the equation (E0); we �nd

�xZ 0 + Z = lnx:::(E`) : it is a linear di¤érential equation of order 1.

We solve this equation using the method of variation of the constant (see
exercise 3), and we obtain

Z = K(x)x = (
1

x
lnx+

1

x
+ C)x = lnx+ 1 + Cx; C 2 R;

then, y =
1

Z
=

1

lnx+ 1 + Cx
:

*****

2) (1� x3)y0 + 3x2y = �y2:::::::(F ):

Remark : y = 0 is a solution of (F ):

If y 6= 0;we divide the equation (F ) by y2, we obtain

(1� x3)y0y�2 + 3x2y�1 = �1::::::::(F 0):

We set Z = y�1, then Z 0 = �y0y�2:

We substitute into the equation (F 0); we �nd

�(1� x3)Z 0 +3x2Z = �1:::(F`) : it is a linear di¤erential equation of order
1.
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We solve this equation using the method of variation of the constant (see
exercise 3), and we obtain

Z =
K(x)

1� x3 =
x+ C

1� x3 ; C 2 R;

therefore, y =
1

Z
=
1� x3
x+ C

:

2.1.5 Riccati di¤erential equations

De�nition 66 Riccati di¤erential equations are written in the following form :

y0 + a(x)y = b(x)y2 + c(x) (E):

where a; b and c are continuous functions on I � R.

Solving method :

Let y0 be a particular solution of (E):

By using the change of variable u = y � y0, we transform the equation (E)
into the form of a Bernoulli equation with k = 2 :

u0 +A(x)u = b(x)u2:

Exercise 67 1) Let the di¤erential equation :

2y0 cosx� 2y sinx = y2:::::::(1):

a) Specify the type of this equation.

b) Find the general solution of (1):

2) Let the di¤erential equation ( Riccati equation) de�ned by:

2y0 cosx = y2 + 2 cos 2x� sin 2x:::::::(2)

c) Check that. y0 = sinx is a particular solution of (2):

d) By using the change of variable u = y � y0, rewrite equation (2)in the
form of (1).
Then, deduce the general solution of (2):
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Solution :
1) Let the di¤erential equation :

2y0 cosx� 2y sinx = y2:::::::(1)

a) It is a Bernoulli di¤erential equation with. k = 2:

b) The general solution of (1) :

Remark : y = 0 is a solution of (1):

If y 6= 0; we divide the equation (1) by y2, we obtain
2y0y�2 cosx� 2y�1 sinx = 1::::::::(10):
We set Z = y�1, then Z 0 = �y0y�2:
We substitute into the equation (10); we �nd

�2Z 0 cosx� 2Z sinx = 1:::(E`) : it is a linear di¤erential equation of order
1.

We solve this equation using the method of variation of the constant (see
exercise 3), and we obtain

Z = K(x) cosx = (�1
2
tanx+ C) cosx = �1

2
sinx+ C cosx; C 2 R;

therefore, y =
1

Z
=

2

� sinx+ C cosx:

2) Let the di¤erential equation ( Riccati equation) de�ned by :

2y0 cosx = y2 + 2 cos 2x� sin 2x:::::::(2):

c) We check that y0 = sinx is a particular solution of (2):

y0 = sinx =) y00 = cosx;

We substitute into the equationn (2) :

2y00 cosx = y0
2 + 2 cos 2x� sin 2x() 2 cos 2x = 2 cos 2x;

then, y0 = sinx is a particular solution of (2):

d) We set u = y � y0 to rewrite equation (2) in the form of (1):

u = y � y0 =) y = u+ y0 = u+ sinx =) y0 = u0 + cosx:

We substitute into the equation (2) :

2(u0 + cosx) cosx = (u+ sinx)2 + 2 cos 2x� sin 2x;
then, 2u0 cosx� 2u sinx = u2 : it is the equation (1):
Therefore, the general solution of this equation is given, according to ques-

tion b), by

u =
2

� sinx+ C cosx; C 2 R;

thus, y = u+ sinx =
2

� sinx+ C cosx + sinx is the general solution of (2):
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2.2 Linear di¤erential equations of second order

2.2.1 Linear di¤erential equations of second order with
constant coe¢ cients

De�nition 68 Linear di¤erential equations of second order with constant coef-
�cients are written in the following form :

y00 + ay0 + by = f(x):::::::(E);

where a; b 2 R and f : I �! R is a continuous function.

Solving method :

The general solution of (E) is written in the form of : y = yp + y0;

where yp is a particular solution of (E) and y0 is the general solution of
the equation without the right-hand side (E0).

y00 + ay0 + by = 0::::(E0) is the equation without the right-hand side.

Let r2 + ar + b = 0:::::(Ec) be the characteristic equation associated with
(E0).

Remark 69 y = 0 is a solution of the di¤erential equation (E0):

Solution of the equation without the right-hand side :

y00 + ay0 + by = 0::::(E0)

Remark 70 Let y1 and y2 be two solutions of the quation (E0) and let C1 and
C2 2 R; then y = C1y1 + C2y2 is also a solution to the equation (E0):

We are looking for the solutions of the equation (E0) in the form : y = erx,
r 2 R:

By substituting into the equation (E0), we obtain

erx(r2 + ar + b) = 0;

hence, r2 + ar + b = 0:::::(Ec):

- If � > 0, we have two real roots r1,r2 2 R, then we obtain two solutions :
y1 = e

r1x and y2 = er2x:

In this case, the solution of (E0) is written in the form : y0 = C1y1 + C2y2;

y0 = C1e
r1x + C2e

r2x; C1; C2 2 R:



2.2. LINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER 37

- If � = 0, we have a double root r, then we obtain two solutions :
y1 = e

rx and y2 = xerx:

In this case, the solution of (E0) is written in the form :

y0 = C1e
rx + C2xe

rx; C1; C2 2 R:

- If � < 0, we have two complex and conjugate roots r = � � i�, in this
case, the solution of (E0) is written in the form :

y0 = e
�x (C1 cos(�x) + C2 sin(�x)) ; C1; C2 2 R:

Solution of the equation with the right-hand side :

Let the equation y00 + ay0 + by = f(x)::::(E):

The general solution of (E) is written in the form : y = yp + y0;

where yp is a particular solution of (E) and y0 is the general solution of
the equation without the right-hand side (E0) : y00 + ay0 + by = 0:

Method 1 :

Let y0 = C1y1 + C2y2 be the general solution of (E0):

We are looking for the general solution of (E) using the method of variation
of constants. This method involves replacing the constants C1 and C2 by the
functions C1(x) and C2(x) in y0:

We set y = C1(x)y1 + C2(x)y2:

We derive : y0 = C 01(x)y1 + C1(x)y
0
1 + C

0
2(x)y2 + C2(x)y

0
2:

We choose C1(x) and C2(x) such that : C01(x)y1+C
0
2(x)y2= 0::::(1);

hence, y0 = C1(x)y01 + C2(x)y
0
2:

We derive : y00 = C 01(x)y
0
1 + C1(x)y

00
1 + C

0
2(x)y

0
2 + C2(x)y

00
2 :

Then, we substitute into (E) : y00 + ay0 + by = f(x);

C 01(x)y
0
1+C1(x)y

00
1+C

0
2(x)y

0
2+C2(x)y

00
2+a(C1(x)y

0
1+C2(x)y

0
2)+b(C1(x)y1+

C2(x)y2) = f(x);

we obtain, C1(x)(y001+ay
0
1+by1)+C2(x)(y

00
2+ay

0
2+by2)+C

0
1(x)y

0
1+C

0
2(x)y

0
2 =

f(x):

Since y001 + ay
0
1 + by1 = 0 and y

00
2 + ay

0
2 + by2 = 0, we get,

C01(x)y
0
1+C

0
2(x)y

0
2= f(x)::::(2):

From the equations (1) and (2), we obtain C 01(x) and C
0
2(x), then we integrate

to �nd C1(x) and C2(x):
Therefore, to �nd C1(x) and C2(x), we solve the following system :(

C 01(x)y1 + C
0
2(x)y2 = 0

C 01(x)y
0
1 + C

0
2(x)y

0
2 = f(x)
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Method 2 : Special cases

1) We assume that the right-hand side of the equation (E) is written in the
form (E) :

f(x) = Pn(x)e
�x;

where Pn(x) is a polynomial of degree n and � 2 R:

- If � is not a root of the characteristic equation (Ec); the particular solution
of the equation (E) is written in the form

yp = Qn(x)e
�x;

where Qn(x) is a polynomial of degree n to be determined.

- If � is a simple root of the characteristic equation (Ec); the particular
solution of the equation (E) is written in the form

yp = xQn(x)e
�x:

- If � is a double root of the characteristic equation (Ec); the particular
solution of the equation (E) is written in the form

yp = x
2Qn(x)e

�x:

2) We assume that the right-hand side of the equation (E) is written in the
form

f(x) = e�x (Pn(x) cos(!x) +Qm(x) sin(!x)) ;

where Pn(x) is a polynomial of degree n , Qm(x) is a polynomial of degree
m and �; ! 2 R:

- If �+!i is not a root of the characteristic equation (Ec); then the particular
solution of the equation (E) is written in the form

yp = e
�x [UN (x) cos(!x) + VN (x) sin(!x)]

where N = max(n;m); UN and VN are polynomials of degree N:

- If � + !i is a root of the characteristic equation (Ec); then the particular
solution of the equation (E) is written in the form

yp = xe
�x [UN (x) cos(!x) + VN (x) sin(!x)] :
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2.2.2 Principle of superposition

If the di¤erential equation is written in the form

y00 + ay0 + by = f1(x) + f2(x);

then the solution of this equation is written in the following form :

y = y0 + y1 + y2;

where,
y0 is the general solution of the equation without the right-hand side :

y00 + ay0 + by = 0; (E0)

y1 is the particular solution of the equation :

y00 + ay0 + by = f1(x); (E1)

y2 is the particular solution of the equation :

y00 + ay0 + by = f2(x): (E2)

Exercise 71 Let the following di¤erential equation :

y00 + 3y0 + 2y = x+ e�x: (E)

1) Find the general solution y0 of the following equation without the right-
hand side :

y00 + 3y0 + 2y = 0: (E0)

2) Find the particular solution y1 of the equation :

y00 + 3y0 + 2y = x: (E1)

3) Find the particular solution y2 of the equation:

y00 + 3y0 + 2y = e�x: (E2)

4) Deduce the general solution of the equation (E):

Solution :
Let the following di¤erential equation :

y00 + 3y0 + 2y = x+ e�x: (E)
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1)We are looking for the general solution y0 of the following equation without
the right-hand side :

y00 + 3y0 + 2y = 0: (E0)

The characteristic equation : r2 + 3r + 2 = 0 (Ec);

� = 1 =) r1 = �1 and r2 = �2;

then, y0 = C1e�x + C2e�2x; C1; C2 2 R:

2) We are looking for the particular solution y1 of the equation :

y00 + 3y0 + 2y = x; (E1)

where f1(x) = x = P1(x)e�x;

with � = 0 and P1(x) = x is a polynomial of degree 1:

� = 0 is not a root of the characteristic equation (Ec); therefore, the
particular solution of the equation (E1) is written in the form

y1 = Q1(x)e
�x = ax+ b;

then, y01 = a and y001 = 0.

We substitute into the equation (E1), we �nd

3a+ 2ax+ 2b = x =) 2a = 1 and 3a+ 2b = 0 =) a =
1

2
and b = �3

4

therefore, y1 =
1

2
x� 3

4
:

3) We are looking for the particular solution y2 of the equation

y00 + 3y0 + 2y = e�x: (E2)

where f2(x) = e�x = P0(x)e�x;

with � = �1 and P0(x) = 1 is a polynomial of degree 1:

� = �1 is a simple root of the characteristic equation (Ec); therefore, the
particular solution of the equation (E2) is written in the form

y2 = Q0(x)e
�x = xAe�x;

then, y02 = �xAe�x +Ae�x = (�Ax+A)e�x,

and y002 = �(�Ax+A)e�x+ �Ae�x = (Ax� 2A)e�x:

We substitute into the equation (E2); we �nd
(Ax� 2A)e�x + 3(�Ax+A)e�x + 2xAe�x = e�x () A = 1;

therefore, y2 = xe�x:
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4) We deduce the general solution of the equation (E):
According to the principle of superposition, the general solution of the equa-

tion (E) is written in the form

y = y0 + y1 + y2 = C1e
�x + C2e

�2x +
1

2
x� 3

4
+ xe�x; C1; C2 2 R:

2.3 Exercises

Exercise 72 Solve the following di¤erential equations, specifying the type :

1) xy0 � 2y = x4(1 + tan2 x):

Solution :
xy0 � 2y = x4(1 + tg2x) (E) :

It is a �rst-order linear di¤erential equation.

First, we look for the solution of the equation without the right-hand side :

(E0) : xy
0 � 2y = 0;

y = 0 is a solution of (E0);

if y 6= 0,
Z
dy

y
= 2

Z
dx

x
=) ln jyj = 2 ln jxj+ C, C 2 R;

then, ln jyj = lnx2 + C =) jyj = eCx2 =) y =+� e
Cx2 = Kx2; K 2 R�:

Since y = 0 is a solution of (E0), then, y = Kx2; K 2 R:
The particular solution is not obvious, so we apply the method of variation

of constants :

we set yG = K(x)x2 (It is the general solution of (E)); then

y0G = K
0(x)x2 + 2xK(x):

We replace in the equation (E) : xy0 � 2y = x4(1 + tan2 x);
K 0(x)x3 + 2x2K(x)� 2K(x)x2 = x4(1 + tan2 x);

then, K 0(x) = x(1 + tan2 x) =) K(x) =

Z
x(1 + tan2 x)dx:

We apply an integration by parts, we set�
U = x
V 0 = 1 + tan2 x

=)
�
U 0 = 1;
V = tanx;

K(x) = x tanx�
Z
tanxdx = x tanx+ ln jcosxj+ C; C 2 R:

therefore, yG = K(x)x2 = x3 tanx+ x2 ln jcosxj+ Cx2; C 2 R:
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Exercise 73 Solve the following di¤erential equations, specifying the type :

(x3 + 1)y0 � 3x2y + xy3 = 0:

Solution :
(x3 + 1)y0 � 3x2y + xy3 = 0 (E) :

It�s a �rst-order Bernoulli di¤erential equation.

y = 0 is a solution de (E):

If y 6= 0; we divide by y3, We �nd

(x3 + 1)y0y�3 � 3x2y�2 + x = 0 (E)0:

We set Z = y�2 =) Z 0 = �2y0y�3:

We replace in the equation (E)0 and we obtain

�(x3 + 1)Z
0

2
� 3x2Z = �x (E`) : It�s a linear di¤erential equation.

We �rst seek the solution of the equation without the right-hand side :

(E`0) : �(x3 + 1)
Z 0

2
� 3x2Z = 0, we obtain

Z0 =
K

(x3 + 1)2
; K 2 R:

The particular solution being not obvious, we apply the method of variation
of the constant (MVC):

we set ZG =
K(x)

(x3 + 1)2
:

We derive and substitute into (E`), we get

K(x) =
2

5
x5 + x2 + C; C 2 R;

then, ZG =
K(x)

(x3 + 1)2
=

2

5
x5 + x2 + C

(x3 + 1)2
=
2x5 + 5x2 + C

5(x3 + 1)2
;

y2 =
1

Z
=) y =+�

r
5(x3 + 1)2

2x5 + 5x2 + C
; C 2 R:

Exercise 74 I) Let the di¤erential equation be de�ned by

(1� x3)y0 + 3x2y = �y2: (1)

1) Give the type of this equation.

2) Find the general solution of (1):
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II) Let the di¤erential equation be de�ned by :

(1� x3)y0 + x2y + y2 � 2x = 0: (2)

1) Give the type of this equation.

2) Verify that y0 = x2 is a particular solution of (2):

3) By using the change of variable u = y � y0 transform the equation (2)
into the form (1):

4) Deduce the general solution of (2):

Solution :
I) 1) (1� x3)y0 + 3x2y = �y2 (1);

It�s a �rst-order Bernoulli di¤erential equation.

2) We are looking for the general solution of (1) :

if y = 0 : it is a solution of (1);

if y 6= 0, we divide by y2; we �nd

(1� x3)y0y�2 + 3x2y�1 = �1. (1)0:

We set Z = y�1 =) Z 0 = �y0y�2:

By substituting into (1)0, we obtain

�(1� x3)Z 0 + 3x2Z = �1 : (E`) (Linear di¤erential equation),

(E`0) : �(1� x3)Z 0 + 3x2Z = 0 (Separable di¤erential equation),

the solution of (E`0) is given by

Z =
K

1� x3 ; K 2 R:

The particular solution being not obvious, we apply the method of variation
of constant (MVC) :

We set ZG =
K(x)

1� x3 ;

Z 0G =
K 0(x)(1� x3)�K(x)(�3x2)

(1� x3)2 :

We substitute into (E`) and we �nd K 0(x) = 1;

then, K(x) = x+ C; C 2 R;

hence, ZG =
x+ C

1� x3 :

Finally, y = 1
ZG

=
1� x3
x+ C

:
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II) 1) (1� x3)y0 + x2y + y2 � 2x = 0 (2) :

It�s a Riccati di¤erential equation.

2) y0 = x
2 =) y00 = 2x : Verify the equation (2):

3) We set u = y � y0 =) y = u+ x2 =) y0 = u0 + 2x:

By substituting into the equation (2); we obtain

(1� x3)u0 + 3x2u = �u2 : it is the equation (1), then its solution is

u =
1� x3
x+ C

;

therefore, y = u+ x2 =
1� x3
x+ C

+ x2 =
1 + Cx2

x+ C
; C 2 R:

Exercise 75 Solve the following di¤erential equations of the second order :

1) y00 � 3y0 + 2y = 0:

2) y00 + 2y0 + 5y = 0 satisfying y(0) = 0 and y0(0) = 1:

3) y00 � 2y0 + y = (x2 + 1)ex:

4) y00 � y0 + y = 2x2e�x:

5) y00 � y = �6 cosx+ 2 sinx:

Solution :
1) y00 � 3y0 + 2y = 0:

The characteristic equation : r2 � 3r + 2 = 0;

� = 1 =) r1 = 1 et r2 = 2;

then, y0 = C1ex + C2e2x; C1; C2 2 R:

*****
2) y00 + 2y0 + 5y = 0 satisfying y(0) = 0 and y0(0) = 1:

The characteristic equation : r2 + 2r + 5 = 0;

� = �16 = 16i2 =) r = �1� 2i;

then, y0 = e�x (C1 cos(2x) + C2 sin(2x)) ; C1; C2 2 R:

We are looking for the particular solution that satis�es y(0) = 0 and y0(0) =
1:

y(0) = 0() C1 = 0;

then, y0 = C2e�x sin(2x) =) y00 = �C2e�x sin(2x) + 2C2e�x cos(2x);
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y0(0) = 1() C2 =
1

2
;

hence, y0 =
1

2
e�x sin(2x):

*****
3) y00 � 2y0 + y = (x2 + 1)ex::::::(E):

We begin by solving the equation without the right-hand side :

y00 � 2y0 + y = 0::::::(E0):

The characteristic equation : r2 � 2r + 1 = 0;

� = 0 =) r = 1 : it is a double root,

then, y0 = C1ex + C2xex; C1; C2 2 R:

We now seek the general solution of (E) using the method of variation of
constants. This method consists of replacing the constants C1 et C2 by the

functions C1(x) and C2(x):

We set y = C1(x)ex + C2(x)xex = C1(x)y1 + C2(x)y2;

where y1 = ex and y2 = xe
x:

To �nd C1(x) and C2(x), we solve the following system:�
C 01(x)y1 + C

0
2(x)y2 = 0;

C 01(x)y
0
1 + C

0
2(x)y

0
2 = f(x);

()
�
C 01(x)e

x + C 02(x)xe
x = 0;

C 01(x)e
x + C 02(x)(x+ 1)e

x = (x2 + 1)ex;

()
�
C 01(x) + C

0
2(x)x = 0;

C 01(x) + C
0
2(x)(x+ 1) = x2 + 1;

()
�
C 01(x) = �C 02(x)x
C 02(x) = x2 + 1

()
�
C 01(x) = �x3 � x;
C 02(x) = x2 + 1;

hence 8><>:
C1(x) = �x

4

4
� x

2

2
+K1;

C2(x) =
x3

3
+ x+K2;

then, y = C1(x)ex + C2(x)xex = (�
x4

4
� x

2

2
+K1)e

x + (
x3

3
+ x+K2)xe

x;

thus, y = (
x4

12
+
x2

2
+K1 +K2x)e

x is the general solution of (E):
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*****
4) y00 � y0 + y = 2x2e�x:::::(F ):

We begin by solving the equation without the right-hand side :

y00 � y0 + y = 0::::::(F0):

The characteristic equation : r2 � r + 1 = 0:::(Fc);

� = �3 = 3i2 =) r =
1� i

p
3

2
;

then, y0 = e
1
2x
�
C1 cos

�p
3
2 x
�
+ C2 sin

�p
3
2 x
��
; C1; C2 2 R:

We now seek a particular solution of (F ) using the second method : the
right-hand side of the equation (F ) is written in the form

f(x) = 2x2e�x = P2(x)e
�x;

where � = �1 and P2(x) = 2x
2 a polynomial of degree 2:

� = �1 is not a root of the characteristic equation (Fc); then the particular
solution of the equation (F ) is written in the form

yp = Q2(x)e
�x = (ax2 + bx+ c)e�x:

We calculate y0p and y00p :

y0p = �(ax2 + bx+ c)e�x + (2ax+ b)e�x = (�ax2 + (2a� b)x+ b� c)e�x;

y00p = �(�ax2 + (2a� b)x+ b� c)e�x + (�2ax+ 2a� b)e�x

= (ax2 + (�4a+ b)x+ 2a� 2b+ c)e�x:

We substitute y0p and y00p in the equation (F ), we obtain

(ax2+(�4a+ b)x+2a� 2b+ c)e�x� (�ax2+(2a� b)x+ b� c)e�x+(ax2+
bx+ c)e�x = 2x2e�x

() 3ax2 + (�6a+ 3b)x+ 2a� 3b+ 3c = 2x2;

by identi�cation, we �nd8<: 3a = 2
�6a+ 3b = 0
2a� 3b+ 3c = 0

()

8<: a = 2=3;
b = 4=3;
c = 8=9;

then, yp =
�
2

3
x2 +

4

3
x+

8

9

�
e�x;

hence, the general solution of (F ) is y = yp + y0;

y =

�
2

3
x2 +

4

3
x+

8

9

�
e�x + e

1
2x
�
C1 cos

�p
3
2 x
�
+ C2 sin

�p
3
2 x
��
;
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C1; C2 2 R:

*****
5) y00 � y = �6 cosx+ 2 sinx:::::(G):

We begin by solving the equation without the right-hand side

y00 � y = 0::::::(G0):

The characteristic equation : r2 � 1 = 0:::(Gc);

r2 = 1 =) r1 = 1 and r2 = �1;

then, y0 = C1ex + C2e�x; C1; C2 2 R:

Now, we seek a particular solution of (G) using the second method: the
right-hand side of the equation (G) is written in the form

f(x) = e�x[P0(x) cos(!x) +Q0(x) sin(!x)] = �6 cosx+ 2 sinx;

with � = 0, ! = 1; P0(x) = �6 and Q0(x) = 2 polynomials of degree 0:

� + !i = i is not a root of the characteristic equation (Gc), therefore, the
particular solution of the equation (G) is written in the form

yp = e
�x[U0(x) cos(!x) + V0(x) sin(!x)] = A cos(x) +B sin(x):

We calculate y0p and y00p :

y0p = �A sinx+B cosx;

y00p = �A cosx�B sinx:

We substitute y0p and y00p in the equation (G), we obtain

�A cosx�B sinx�A cosx�B sinx = �6 cosx+ 2 sinx

=) �2A cosx� 2B sinx = �6 cosx+ 2 sinx;

by identi�cation, we �nd�
�2A = �6
�2B = 2

()
�
A = 3;
B = �1;

then, yp = 3 cos(x)� sin(x);

hence, the general solution of (G) is

y = yp + y0 = 3 cos(x)� sin(x) + C1ex + C2e�x; C1; C2 2 R:
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Chapter 3

Usual formulas

3.1 Partial sum of an arithmetic sequence

Un = U0 + nr; r 2 R�:

Sn = U0 + U1 + U2 + :::::+ Un = (U0 + Un)
n+ 1

2
:

3.2 Partial sum of a geometric sequence

Un = U0q
n; q 6= 1;

Sn = U0 + U1 + U2 + :::::+ Un = U0

�
1� qn+1
1� q

�
:

If q = 1; Sn = (n+ 1)U0:

lim
n�!+1

qn = 0() �1 < q < 1:

3.3 Trigonometry Formulas

1) sin(a+ b) = sin a cos b+ sin b cos a, so sin 2a = 2 sin a cos a:

2) sin(a� b) = sin a cos b� sin b cos a:

3) cos(a+ b) = cos a cos b� sin a sin b, so cos 2a = cos2 a� sin2 a:

4) cos(a� b) = cos a cos b+ sin a sin b:

5) cos 2a = 2 cos2 a� 1, so cos2 a = cos 2a+ 1

2
:

6) cos 2a = 1� 2 sin2 a, so sin2 a = 1� cos 2a
2

:

49
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7) sin p+ sin q = 2 sin
p+ q

2
cos

p� q
2
:

8) sin p� sin q = 2 sin p� q
2

cos
p+ q

2
:

9) cos p+ cos q = 2 cos
p� q
2

cos
p+ q

2
:

10) cos p� cos q = �2 sin p� q
2

sin
p+ q

2
:

11) tan(a+ b) =
tan a+ tan b

1� tan a: tan b :

12) tan(a� b) = tan a� tan b
1 + tan a: tan b

:

Relation between sine and cosine
sin2 x+ cos2 x = 1; 8x 2 R:

3.4 Common values

Number 0
�

6

�

4

�

3

�

2
�

sine 0
1

2

p
2

2

p
3

2
1 0

cosine 1

p
3

2

p
2

2

1

2
0 �1

tangent 0

p
3

3
1

p
3 0

3.5 Properties of hyperbolic functions

Hyperbolic sine : shx =
ex � e�x

2
; 8x 2 R:

Hyperbolic cosine : chx =
ex + e�x

2
; 8x 2 R:

1) chx+ shx = ex:

2) chx� shx = e�x:
3) ch2x� sh2x = 1:
4) ch(x+ y) = chx:chy + shx:shy:

5) ch(2x) = ch2x+ sh2x = 1 + 2sh2x = 2ch2x� 1:
6) sh(x+ y) = shx:chy + shy:chx:

7) sh(2x) = 2shx:chx:
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3.6 Derivatives of usual functions
The function The derivative

f(x) = xn f 0(x) = nxn�1;8x 2 R

f(x) = lnx f 0(x) =
1

x
;8x > 0

f(x) = ex f 0(x) = ex;8x 2 R

f(x) =
p
x f 0(x) =

1

2
p
x
;8x > 0

f(x) = sinx f 0(x) = cosx; 8x 2 R

f(x) = cosx f 0(x) = � sinx; 8x 2 R

f(x) = tanx =
sinx

cosx
f 0(x) =

1

cos2 x
= 1 + tan2 x; x 6= �

2 + k�

f(x) = shx =
ex � e�x

2
f 0(x) = chx =

ex + e�x

2
;8x 2 R

f(x) = chx f 0(x) = shx; 8x 2 R

f(x) = thx =
shx

chx
f 0(x) =

1

ch2x
= 1� th2x;8x 2 R

f(x) = arcsinx;8x 2 [�1; 1] f 0(x) =
1p
1� x2

;8x 2 ]�1; 1[

f(x) = arccosx;8x 2 [�1; 1] f 0(x) =
�1p
1� x2

;8x 2 ]�1; 1[

f(x) = arctanx f 0(x) =
1

1 + x2
;8x 2 R

f(x) = arg shx f 0(x) =
1p
x2 + 1

;8x 2 R

f(x) = arg chx;8x � 1 f 0(x) =
1p
x2 � 1

;8x > 1

f(x) = arg thx;8x 2 ]�1; 1[ f 0(x) =
1

1� x2 ;8x 2 ]�1; 1[

f(x) = (U(x))n f 0(x) = nU 0(x)Un�1(x)

f(x) = ln(U(x)) f 0(x) =
U 0(x)

U(x)

f(x) = eax f 0(x) = aeax;8x 2 R
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3.7 Antiderivatives of usual functions
The function The antiderivative

f(x) = xn
Z
f(x)dx =

xn+1

n+ 1
+ C;8x 2 R

f(x) = lnx

Z
f(x)dx = x lnx� x+ C;8x > 0

f(x) = ex
Z
f(x)dx = ex + C;8x 2 R

f(x) =
p
x

Z
f(x)dx =

2

3
x3=2 + C;8x > 0

f(x) = sinx

Z
f(x)dx = � cosx+ C;8x 2 R

f(x) = cosx

Z
f(x)dx = sinx+ C;8x 2 R

f(x) = tanx =
sinx

cosx

Z
f(x)dx = � ln jcosxj+ C�; x 6= �

2 + k�

f(x) = shx =
ex � e�x

2

Z
f(x)dx = chx+ C =

ex + e�x

2
+ C;8x 2 R

f(x) = chx =
ex + e�x

2

Z
f(x)dx = shx+ C;8x 2 R

f(x) = thx =
shx

chx

Z
f(x)dx = ln(chx) + C;8x 2 R

f(x) = Un(x)U 0(x)

Z
f(x)dx =

Un+1(x)

n+ 1
+ C

f(x) = sin(ax); a 6= 0
Z
f(x)dx = �cos(ax)

a
+ C;8x 2 R

f(x) = eax; a 6= 0
Z
f(x)dx =

eax

a
+ C;8x 2 R
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3.8 Lexicon

A
- Absolute value : valeur absolue.
- Absolute convergence : convergence absolue.
- Almost : presque.
- Analysis : analyse.
- Antisymetric : antisymétrique.
- Apex : sommet.
- Argument : argument.
- Arithmetic : arithmétique.
- Array : tableau.
- Assume : supposer.
- Assumption : supposition.
- Axiom : axiome.
- Axis : axe.
B
- Basis : base.
- Bijective : bijective.
- Bounded : borné.
- Bracket : parenthèse.
- By induction : par récurrence.
C
- Calculus : calcul.
- Cartesian coordinate system.: Repère cartésien.
- Cauchy sequence : suite de Cauchy.
- Center : centre
- Characteristic : caractéristique.
- Characteristic polynomial : polynôme caractéristique.
- Circle : cercle.
- Closed : fermé.
- Coe¢ cient : coe¢ cient.
- Combination : combinaison.
- Common factor : facteur commun.
- Commutative : commutatif.
- Complete : complet.
- Complex number : nombre complexe.
- Computation : calcul.
- Consequently : par conséquent.
- Constant : constante.
- Continuity : continuité.
- Continuous (function) : continue (fonction).
- Contraction : contraction.
- Convergence : convergence.
- Converge to a limit : converger vers une limite.
- Converse of a theorem : réciproque d�un théorème.
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- Conversely : réciproquement.
- Coordinate : coordonnée.
- Cosine : cosinus.
- Countable : dénombrable.
- Counterexample : contre-exemple.
- Coverage of a set : recouvrement d�un ensemble.
- Cube root : racine cubique.
- Curve : courbe.
D
- Decomposition : décomposition.
- Decreasing function : fonction décroissante.
- De�ned : dé�ni.
- Degree : degré.
- Delete (to) : supprimer.
- Denote : noter.
- Density : densité.
- Derivative : dérivée.
- Direct sum : somme directe.
- Divide : diviser.
- Dot : point.
E
- Eigenvalue : valeur propre.
- Eigenvector : vecteur propre.
- Element : élément.
- Endpoint : Extrémité.
- Entire function : fonction entière.
- Equality : égalité.
- Equation : équation.
- Equilateral triangle : triangle equilatéral.
- Equivalence relation : relation d�équivalence.
- Equivalent : équivalent
- Euclidean : euclidien.
- Even : pair.
- Everywhere : partout.
- Exact : exact.
- Example : exemple.
- Exponential : exponentiel.
F
- Factorial : factoriel.
- Factorise : factoriser.
- Field : corps.
- Finite : �ni.
- Finite dimensional real vector space : espace vectoriel réel de dimension

�nie
- Fixed : �xe.
- Fixed point : point �xe.



3.8. LEXICON 55

- Floor function : fonction partie entière.
- Formula : formule.
- Fractional line : trait de fraction.
- Free : libre.
- Function : fonction.
- Fundamental : fondamental.
G
- Graph : graphe.
- Greatest : plus grand (le).
- Greatest common divisor (gcd) : pgcd.
- Group : groupe.
H
- Higher derivative : dérivée d�ordre supérieur.
- Homogeneous : homogène.
- However : toutefois.
- Hyperbola : hyperbole.
- Hypotenuse : hypoténuse.
- Hypothesis : hypothèse.
I
- Identity : identité.
- Identity element : élément neutre.
- If and only if : si et seulement si.
- Increasing function : fonction croissante.
- Indeed : en e¤et.
- Independent : indépendant.
- Induction : récurrence.
- Inequality : inégalité.
- In�mum (greatest lower bound) : borne inférieure.
- In�nite : in�ni.
- Integer number : nombre entier.
- Integral : intégrale.
- Intermediate value theorem : théorème des valeurs intermédiaires.
- Interval : intervalle.
- inverse image : image réciproque.
- Invertible : inversible.
- Involve : impliquer.
- Irreducible : irréductible.
- Isocel triangle : triangle isocèle
- Isolated : isolé.
- Isomorphism : isomorphisme.
J
K
- Kernel : noyau.
L
- Law of composition : loi de composition.
- Least : plus petit.
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- Least common multiple (lcm) : ppcm.
- Lemma : lemme.
- Length : longueur.
- Less than : plus petit que
- Let.....be : soit.
- Limit : limite
- Linear : linéaire.
- Linearly independent family : famille libre.
- Lower limit : limite inférieure.
- Lower bound : minorant.
M
- Major : majeur.
- Majorized : majoré
- Manifold : variété.
- Map : application.
- Maximal : maximal.
- Mean : moyenne.
- Meet of two sets : intersection de deux ensembles.
- Merely : seulement.
- Minimal : minimal.
- Minorized : minoré.
- Monic : unitaire.
- Monotonic function : fonction monotone.
- Multiplicity : multiplicité.
- Multiply : multiplier.
N
- Necessary condition : condition nécessaire.
- Negligible : négligeable.
- Neighborhood : voisinage.
- Neperian logarithm : logarithme népérien.
- Non-empty : non vide.
- Not all zero : non tous nuls.
- Null : nul.
- Number : nombre.
- Numerator : numérateur.
O
- Object : objet.
- Odd : impair.
- One-to-one map : application injective.
- Onto (a map) : surjective.
- Open : ouvert.
- Operator : opérateur.
- Order : ordre.
- Order or multiplicity of a root : ordre de multiplicité d�une racine.
- Order relation : relation d�ordre.
- Ordinate : ordonnée.
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P
- Parameter : paramètre
- Partial fraction expansion : décomposition en éléments simples.
- Partial order : relation d�ordre.
- Partition : partition.
- Perfect : parfait.
- Period : période.
- Periodicity : périodicité.
- Permutation : permutation.
- Plane : plan.
- Point : point.
- Polynomial : polynôme.
- Power : puissance.
- Prime : premier.
- Prime number : nombre premier.
- Product : produit.
- Proof : preuve.
- Proper : propre.
- Property : propriété.
- Pythagorean triple : triplet pythagoricien.
Q
R
- Radius : rayon
- Raise to the power n : élever à la puissance n.
- Range : image.
- Rank : rang.
- Ratio : rapport.
- Rational function : fonction rationnelle.
- Real number : nombre réel.
- Rectangle : rectangle.
- Reduced : réduit.
- Regular : régulier
- Relatively prime integers : entiers premiers entre eux.
- Remark : remarque.
- representation : représentation.
- Right-hand side : membre de droite.
- Ring : anneau.
- Root : racine.
- Row : ligne.
- Rule : règle.
- Ruler : règle (instrument).
S
- Scalar : scalaire.
- Schwarz inequality : inégalité de Schwarz.
- Section : section.
- Segment : segment.
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- Sequence : suite.
- Series : série.
- Set : ensemble.
- Several : plusieurs.
- Shape : forme.
- Sign : signe.
- Sine : sinus.
- Singular : singulier.
- Size : taille.
- Small : petit.
- Smooth : lisse.
- Space : espace.
- Square : élever au carré.
- Square : carré.
- Square root : racine carré.
- Star : Etoile.
- Strictly : strictement
- Sub : sous-
- Subgroup : sous-groupe.
- Subset : sous-ensemble (partie).
- Subspace : sous-espace.
- Subtract : soustraire.
- Subtraction : soustraction.
- Su¢ cient : su¢ sant.
- Su¢ cient condition : condition su¢ sante.
- Sum : somme.
- Summarize (to) : résumer.
- Support : support.
- Supremum (least upper bound) : borne supérieure.
- Surface : surface.
- Symmetric : symétrique.
- Symmetry : symétrie.
- System of linear equations : système d�équations linéaires.
T
- Tangent : tangente.
- Term : terme.
- Theorem : théorème.
- Theory : théorie.
- Totally ordered set : ensemble totalement ordonné.
- Trace : trace.
- Trajectory : trajectoire.
- Transform : transformation.
- Transitive : transitif.
- Translation : translation.
- Transpose : transposé.
- Trapezoid : trapèze.
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- Triangle : triangle.
- Triangle inequality : inégalité triangulaire.
- Trivial : trivial.
- Type : type.
U
- Uncountable : indénombrable.
- Uniform continuity : continuité uniforme.
- Union : réunion.
- Universal : universel.
- Unknown : inconnue.
- Upper bound : majorant.
V
- Value : Valeur.
- Variable : variable.
- Vector : vecteur.
- Vector space : espace vectoriel.
- Volume : volume.
W
- Well-de�ned : bien dé�ni.
- Width : largeur.
- Without loss of generality : sans perte de généralité.
X
Y
Z
- Zéro : zero.
- Zero of a polynomial : racine d�un polynôme.
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