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Abstract Neural network (NN) models were evaluated for
the prediction of suspended particulates with aerodynamic
diameter less than 10-μm (PM10) concentrations. The model
evaluation work considered the sequential hourly concentra-
tion time series of PM10, which were measured at El Hamma
station in Algiers. Artificial neural network models were de-
veloped using a combination of meteorological and time-scale
as input variables. The results were rather satisfactory, with
values of the coefficient of correlation (R2) for independent
test sets ranging between 0.60 and 0.85 and values of the
index of agreement (IA) between 0.87 and 0.96. In addition,
the root mean square error (RMSE), the mean absolute error
(MAE), the normalized mean squared error (NMSE), the ab-
solute relative percentage error (ARPE), the fractional bias
(FB), and the fractional variance (FS) were calculated to as-
sess the performance of the model. It was seen that the overall
performance of model 3 was better than models 1 and 2.
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Introduction

Particulate matter with aerodynamic diameter less than 10 μm
(PM10) has negative effects on public life, vegetation, animals,
and human health (Dockery et al. 1992; Molina and Molina
2004; Schwartz and Dockery 1992; Touloumi et al. 1994).
Governments and worldwide organizations have tried to de-
crease emissions and human exposure to PM10 by supplying
guidelines and by taking a number of jurisdictive penalties. In
Algeria, daily average PM10 concentrations should not exceed
the air quality standard regulations 50 μg/m3 more than once a
year. However, previous studies have proved that the airborne
particle concentrations often surpass the air quality standards
in Algeria (Khedairia and Khadir 2012; Laïd et al. 2006; Sabri
and Med Tarek 2012). Therefore, it is of best interest for local
authorities to forecast air quality suitably in advance so that
the population can be protected during such periods. Several
approaches have been used for modeling air quality measure-
ments: deterministic analysis (numerical and analytical
models) (Juda 1989; Zannetti 1989), statistical analysis (em-
pirical and regressionmodels) (Delfino et al. 1994; Fuller et al.
2002; Hadley and Toumi 2003; Ibarra-Berastegi et al. 2001),
and physical analysis (Khare and Sharma 2002). Forecasting
the daily/hourly levels of air pollutants represents a challeng-
ing task owing to the difficulty of the physical and chemical
processes that control the formation, transportation, and elim-
ination of particulate matter in the air (Ibarra-Berastegi and
Madariaga 2003; Jacobson 1997; Seinfeld and Pandis 1998).
Thus, on account of these difficulties, the statistical methods
are expected to be more consistent predicting tools and offer
better results than physical and deterministic approaches
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(Benarie 1987; Juda 1989; Khare and Sharma 2002;
Venkatram 1983; Zannetti 1989). Among several statistical
methods, artificial neural networks (ANNs) have been shown
to be quite powerful in capturing the complex relationships
between the pollutant and the predictor meteorological vari-
ables, with good predictive results (Božnar et al. 1993;
Chaloulakou et al. 2003; Gardner and Dorling 1999;
Hadjiiski and Hopke 2000; Kolehmainen et al. 2001). One
of the major advantages of neural networks is their ability to
generalize faster execution speed and ease of working with
high-dimensional data. The use of ANNs in the case of PM
has been emphasized to the forecasting of hourly/daily aver-
age concentrations based on air pollution and weather histor-
ical information (Maier and Dandy 2000; Maier et al. 2004).
Perez et al. (2000) reported predictions of hourly average con-
centrations of particles with aerodynamic diameter less than
2.5 μm (PM2.5) several hours in advance, based on data ob-
tained at a fixed point in the downtown area of Santiago,
Chile. However, results obtained with ANN showed predic-
tion errors in the range from 30 to 60 %. In order to improve
forecasts, they considered the reduction of noise in the data as
necessary. McKendry (2000) has compared ANN model with
traditional multiple regression (MLR) models for fine partic-
ulate matter PM10 and PM2.5. He found that meteorological
variables, persistence, and co-pollutant data were useful for
forecasting PM concentration. Chelani et al. (2002)
established an ANN model to forecast PM10 and noxious
metals concentration measured in the city of Jaipur, India.
Authors were able to predict concentrations quite reasonably.
Lu et al. (2002) have developed neural networks for the pre-
diction of hourly respirable suspended particle (RSP) concen-
trations collected in causeway bay area of Hong Kong. The
simulation results showed the effectiveness of the approach.
Tecer (2007) proposed ANNs to predict PM concentrations at
two different stations in Zonguldak Province in the black sea
area of Turkey. The results obtained showed that models can
efficiently be used to forecast of air quality. Alternatively,
Kukkonen et al. (2003) made extensive evaluation of neural
network models for the prediction of nitrogen dioxide (NO2)
and PM10 concentrations, for two urban traffic locations in
Helsinki, Finland, using selected traffic flow and
preprocessed atmospheric variables as predictors. Results
showed that ANN models can be useful and fairly accurate
tools of valuation in forecasting air pollution concentrations in
urban areas. Pires et al. (2008) have compared the perfor-
mance of five linear models: MLR, principal component re-
gression, independent component regression, quantile
regression, and partial least squares regression to predict the
daily mean PM10 concentrations. They concluded that the
dataset size was an essential parameter for the assessment of
models. The prediction was more efficient when using
independent component regression for smaller dataset, while
partial least squares regression was more efficient for larger

dataset. Paschalidou et al. (2011) used MLP and radial basis
function, for hourly PM10 concentrations in Cyprus. Themod-
el depends on heterogeneity of climatological and pollutant
parameters of 2-year dataset. The estimation showed that the
MLP models show the best predicting performance. In addi-
tion, Roy et al. (2011) have developed multiple regression and
ANN models to predict particulate matter in different seasons
at a large opencast coal mines in India. The outcomes revealed
that ANN can forecast particulate matter levels better than
multiple regression models.

Generally, ANN has been proven to be successful general
machine learning methods amongst other approaches.
However, the neural network-based approaches have their
own disadvantages. The first disadvantage is the high com-
plexity of neural network methods which leads to large lags
during the treatment. The second disadvantage is that neural
network requires a period of learning before they can be
employed. It has been powerless to split the cause-effect in-
teractions of the phenomena associated with atmospheric pol-
lution and in particular with aerosol particle by using certain
types of ANN (Kolehmainen et al. 2000). The results showed
that the forecasting modeling of gaseous pollutants is more
consistent than that of the particles. Furthermore, Schlink et
al. (2003) demonstrated that specific techniques are often
good in some respects but bad in others. To overcome this
problem, they recommended to use different types of neural
networks together as the best concession, as these can handle
nonlinear relations and can be easily improved to site partic-
ular conditions.

In this paper, ANN models with different number of neu-
rons are investigated to identify the best model for PM10 fore-
casting at El Hamma station in Algiers, Algeria. In the evalu-
ation section, the results of the ANN models are compared
with other conventional methods.

Measurements and methods

Study area and data

Algeria is located in North Africa midway with a coastal ter-
ritory of about 1600 km long Mediterranean along the
Mediterranean to the north, Libya to the east, Tunisia to the
northeast, Niger to the southeast, Morocco to the west, and
Mauritania and Mali to the southwest. Most of its industrial
regions are located in the north, which represent 20 % of its
surface area and 80 % of its population. Algiers is the capital
and one of the major cities of the Northern Algeria. The city
has a population of about 1.5 million inhabitants more than 3
million live in its metropolitan area. Population, industrializa-
tion, and motorized rate are constantly increasing in Algiers.
Road traffic is particularly intense.
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Air quality and meteorological variables are monitored at
an automatic post operated by local pollution network, namely
SAMASAFIA (Arabic term literally means: Clear Sky). The
stations provide data with a continuous temporal resolution of
24 h. In Algiers, the network is consisted of four stations: Ben
Aknoun, El Hamma, Place du 1er Mai, and Bab El-Oued dis-
tributed through the city (see inset of Fig. 1). The main pol-
lutants monitored in the Algiers’s atmosphere are classified in
two categories. The first pollutants are chemical, directly emit-
ted to the air such as nitrogen oxides (NOx), carbon monoxide
(CO), carbon oxides (CO2) and sulfur oxides (SOx), and hy-
drocarbons (HC), or solid such as PM. The secondary pollut-
ants are the elements formed by chemical reactions such as
ozone (O3). The meteorological variables obtained and exam-
ined from station include wind speed (WS), wind direction
(WD), relative humidity (RH), and air temperature (temp).

In this study, the measurements are provided by
SAMASAFIA network at El Hamma post. The station is near
to the city center, and thus measurements are strongly influ-
enced by car traffic and urban activities. Dataset used to pre-
dictive PM10 concentration were collected during the period
2002–2006 as is shown in Fig. 1. Levels have, however, sub-
stantially surpassed the recommended national ambient air
quality standards of 50 μg/m3 for residential areas. Forty-
eight percent of the total data exceed the agreed limit thresh-
old. The average annual PM concentrations have reached the
highest levels ever recorded at the station. This information is
of vital necessity to national decision makers to protect living
system and control of air pollution.

The missing data were found to be ∼25 %, mainly caused
by power cuts and numerous failures in different analysis. Due
to the lack in statistics, we focused our study on a period
without missing data form 2002 to 2003. The dataset (2002–
2003) of measured PM10 concentration and three main mete-
orological parameters (i.e., WS, RH, and Temp) used in this
paper are presented in Table 1.

In Table 1, the average annual PM10 concentrations of
68 μg/m3 for 2002 and 143 μg/m3 for 2003 were estimated
for the monitoring station used in the present work. These
statistics illustrate the fact of quite high pollution concentra-
tions in the city of Algiers. Sometimes, the PM10 levels can
reach more than four to seven times the limit value (see Table
1). Furthermore, the standard deviations (δ) as compared to
average values in both PM10 levels and climatological vari-
ables reveal high seasonal dissimilarities in meteorological
conditions of Algiers. In fact, the strong variability of weather
conditions has a prominent effect on PM10 (Azmi et al. 2010).
For instance, high wind speeds and rainy weather result in
lower particulate matter concentrations in the atmosphere
(Akpinar et al. 2008; Bevan et al. 1991; van Wijnen et al.
1995). In addition, the increase in the temperature will stimu-
late the chemical reactions, resulting from the formation of
finite particulate matter in the atmosphere (Wang et al. 2013).

Implementation of the model

In this study, an ANN model was developed to forecast PM10

concentration with the best accuracy. Prediction of future pol-
lution levels is expected to base on the history of its individual
concentration and values of some atmospheric parameters.
Therefore, the timely variation of the pollutant concentration
can be illustrated by the stationary time series equation:

Z tð Þ ¼ PM10 tð Þ
¼ f PM10 t−24ð Þ;WS t−24ð Þ;RH t−48ð Þ;Temp t−24ð Þf g

ð1Þ
where t is the current hour.

The ANN applied in this study is the multiple layer percep-
tion (MLP) network. This network consists of a set of inter-
connected layers of artificial neurons Bnodes^, which are ar-
ranged to form three layers: an input, hidden, and an output
layers. Each layer includes one or more neurons connected
with the neurons from the previous and the following layer.

Fig. 1 PM10 concentration (μg/m3) monitored at El Hamma (2002–
2006). Inset map shows the locations of SAMASAFIA air quality
monitoring networks (purple and red circles) in Algiers

Table 1 Data summary for key monitored parameters, El Hamma
station (2002/2003)

Parameters Average Minimum Maximum δ
2002/2003

PM10 (μg/m
3) 68/143 24/67 205/359 33.8/67.2

WS (m/s) 4.4/4.2 1.7/1.7 9.7/8.1 1.8/1.7

RH (%) 68/72.6 31/39 84/83 11.6/10.1

Temp (°C) 21.3/19.1 15.4/16.5 26.5/24.8 2.3/1.7

PM10 articulate matter with aerodynamic diameter less than 10 μm, WS
wind speed, RH relative humidity
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The input layer has as many nodes as the number of input
variables (e.g., meteorological parameters). The main work
of the hidden nodes is to process the data and encrypt the
information in the system (Fontes et al. 2014). Once the net
sum at a hidden neuron is determined, a signal in every artifi-
cial neurons of the following layer is then delivered, using a
function of linear integration of the incoming inputs (Kim and
Gilley 2008). The function is known as activation function
and is crucial for the determination of the output. For instance,
if transfer function is linear, an input of meteorological and
pollution parameters are transformed to an output with both
negative and positive values, but if the function is exponential,
the output can have only positive values. This study will use a
sigmoid activation function in hidden neurons and an exponen-
tial function in output neuron, respectively. Mathematically, a
sigmoid activation function has the following form:

f tð Þ ¼ 1

1þ e−t
ð2Þ

Afterward, the shaped signal is conducted to every node in
the following layer to produce new targets known as outputs.
In view of these disparities between target and output, new
weights are then directed to transfer functions to calculate new
outputs, until the new output programs are close enough with
the successful target performance.

An archetypalMLP network is shown in Fig. 2. The dataset
used covers the period 2002–2003. The hourly raw data were
based on pollutants and meteorological parameters of the day
before at each monitoring site. Therefore, a preprocessing
phase was mandatory to manage the primary data and gener-
ate a reliable database having all preferred parameters for each
days. The validity of this implementation was evaluated in
MATLAB 7 neural network toolbox, by indexing date and
consolidating their corresponding values. This is because of
its capacity to work with matrix/arrays and vector variables
(Hagan et al. 1996). The program offers several facilities such

as simulation, algorithm developments, graphical presenta-
tion, normalization, and demoralization methods (Roy
2012). There are no universal rules to choose on the network
architecture. The number of hidden nodes is a vital factor in
the model: If the numbers of hidden neurons are too small, the
training data may fail to converge to a minimum in the process
data space, but if a neuron number are too large, the network
may over fit our training model. To develop ANN model and
to avoid over-fitting, a cross validation approach is commonly
recommended (ASCE 2000). The method implicates
subdividing data into supplementary subgroups, executing
the analysis on one subgroup (training data), and validating
the analysis on the other subgroup (validation data and testing
test) (Bowden et al. 2002; Comrie 1997; Gardner and Dorling
1998). Five percent of the total data were not used, be-
cause they were missing mainly due to the power cuts and
various failures in the measure instruments. Missing data
is a problem which poses a serious problem for the quality
of the network. Due to that, it was difficult to assess
correctly the daily PM10 concentrations. Therefore, 95 %
of the measured data were used and randomly divided into
three sets, training, validation, and testing. Epochs are
usually needed before the error becomes adequate to
PM10 concentrations. An entire pass through all of the
input training vectors is named an epoch. Once such an
epoch has ensued without errors, training data is then
completed.

Several experiments were performed to determine the best
combination of the optimal number of hidden layers, neurons
per layer, learning rate, learning algorithm, the activation
function, and errors. In this work, the feed-forward neural
network with five neurons, ten neurons, and 15 neurons in
hidden layer shows preeminent prediction on the approach.
Networks with more than two hidden layers did not match
well with the measured pollutant levels. The ANN architec-
ture and input variables for the three models are shown in
Table 2.

Output

Neural Network

including connections

between neurons

Compare

Input

Adjust 

Connections

TargetFig. 2 A typical multiple layer
perception (MLP) structure
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In order to evaluate the performance of constructed ANN,
several statistical parameters were computed during the fore-
casting process. The recommended parameters (Karppinen et
al. 2000; Petersen 1997; Willmott 1981) are mean absolute
error (MAE), root mean square error (RMSE), index of agree-
ment (IA), the squared correlation coefficient (R2), and the
fractional bias (FB). The mathematical formulas for each of
these statistical parameters are calculated as follows:

The root mean squared error (RMSE)

RMSE ¼ Pi−Oið Þ2
h i1=2

ð3Þ

The normalized mean squared error (NMSE)

NMSE ¼ Oi−Pið Þ
2

O*P
ð4Þ

The mean absolute error (MAE)

MAE ¼ 1

n

X
i
Pi−Oij j ð5Þ

The squared correlation coefficient (R2)

R2 ¼
X

i
Pi−P
� �

Oi−O
� �h i2

X
i
Oi−O
� �2X

i
Pi−P
� �2 ð6Þ

The index of agreement (IA)

IA ¼ 1−
Pi−Oið Þ

2

Pi−O
���

���þ Oi−O
���

���
h i2 ð7Þ

The fractional bias (FB)

FB ¼ 2*
O−P

Oþ P

 !
ð8Þ

where Pi and Oi are the predicted and observed concentra-
tions, respectively. The overbar refers to the average over all
hourly values. The statistical parameters IA and R2 indicate
the correlation of two time sequences of values, whereas FB

indicates the agreement of the mean values. The lower IA and
R2 are, the weaker is the degree of the agreement between two
time sequences of values.

In addition, the performance of each model was evaluated
by calculating the absolute relative percentage error (ARPE)
and the fractional variance (FS) between predicted and mea-
sured values as follows:

The absolute relative percentage error (ARPE)

ARPE ¼ Pi−Oi

Oi

����
���� ð9Þ

The fractional variance (FS)

FS ¼ 2*
δOi−δPi

δOiþδPi

� �
ð10Þ

The δO and δP are the standard deviation of observations
and predictions, respectively.

Results and discussion

In this research work, the model was trained with small data
sets due to the incomplete data base available without lack.
The performances of the constructed models were assessed by
calculating R2, RMSE, δ, slope, and IA. Table 3 summarizes
the model performance in the training and testing phase with
different numbers of neurons after obtaining optimal architec-
ture for ANN.

R2 values between the measured and casted concentrations
of different pollutants varied from 0.61 to 0.86 for the training
data set and from 0.43 to 0.80 for the prediction data set. The
corresponding IAwas from 0.66 to 0.93 for the training data
set and from 0.46 to 0.85 for the prediction data set. As a result
of the power term, RMSE is more appropriate to illustrate the
presence of significant underpredictions or overpredictions.
The RMSE varied from 6.16 to 12.33 for both training and
prediction data sets. The difference between the standard de-
viation of the predicted concentration (δP) and the observed
concentration (δO) is minimum. In addition, the slope of trend
line was calculated to assess the model performance. The
slope values fluctuated from 0.62 to 0.95 for the training data
set and from 0.7 to 1.3 for the prediction data set. These results
indicate rather good fits between measured and modeled pol-
lutant levels in most of the cases. The produced scatter plots
and metrics reflect the real forecasting ability of the models. In
general, the scatter plots are fairly symmetrical for the numer-
ous types of ANN produced. This elucidates that the models
are reproducing the variation in the test data set with a reason-
able correctness.

Table 2 ANN topology and input variables for various models

Model Network topology (nodes per layer) Input variables

Model 1 4-5-1 Wind speed
Temperature
Relative humidity
Emission level

Model 2 4-10-1

Model 3 4-15-1
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After recurrent trials, the best prediction on validation data
set was achieved at 23 epochs with the learning rate of 0.05 for
model 3. Likewise, for models 1 and 2, the best prediction on
validation data was attained at 11 epochs with the learning rate
of 0.05 and 10 epochs with the learning rate of 0.05, respec-
tively. Table 4 summarizes quantitatively the performance of
the model with different number of neurons. On the whole, it
is obvious that the model shows good agreement between the
two data sets (i.e., the observed and predicted values).
Furthermore, the relatively low values of the MAE—13.59,
17.13, and 10.80 μg/m3—as well as the low RMSE values—
17.72, 21.13, and 13.78 μg/m3—for models 1, 2, and 3, re-
spectively, reflect the small deviation among the predicted and
the observed concentrations. Moreover, the low values of FS
reveal the fact that the variance of the MLP predictions is
equal to the variance of the observed value. The low values
of NMSE (0.0037, 0.0042, and 0.0051) are another indicator

of the good performance of the MLP approach, as well as the
FB values, which are close to zero in the three cases. The
performance of these models viewed by the mean absolute
percentage error (MAPE) over the total 948 prediction hours

Table 3 Values of calculated statistical parameters for the constructed
ANN models

Statistical parameter Model 1 Model 2 Model 3

Training RMSE 9.31 8.74 12.33

R2 0.65 0.61 0.86

Slope 0.62 0.63 0.95

δ 8.26 8.26 8.26

IA 0.69 0.66 0.93

Prediction RMSE 6.16 11.47 10.75

R2 0.43 0.80 0.75

Slope 0.7 1.1 1.3

δ 8.19 8.28 8.42

IA 0.46 0.85 0.81

RMSE root mean square error, IA index of agreement

Table 4 Performance indicators of conventional models

Statistical parameter Model 1 Model 2 Model 3

Learning rate 0.05 0.05 0.05

NMSE 0.0042283 0.005156 0.003756

MAE 13.58829 17.1334 10.79852

δ 3.68623 4.139251 3.28611

FS 0.008808 −0.00208 −0.01881
FB 0.0069322 −0.01424 −0.04604
IA 0.91 0.87 0.96

RMSE 17.72 21.13 13.78

ARPE 0.198 0.2507 0.158043

R2 0.72174 0.6029 0.85358

Slope 1.05994 0.95237 0.8868

NMSE normalized mean squared error, MAE mean absolute error, FS
fractional variance, FB fractional bias, IA index of agreement, RMSE root
mean square error, ARPE absolute relative percentage error
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Fig. 3 Scatter plots comparison between the predicted and the observed
PM10 concentrations in models 1 (a), 2 (b), and 3 (c)
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is 20, 25, and 16 %. These results could be considered satis-
factory given that the criteria used for the input pattern selec-
tion were quite restrictive. Performance of the model may be
improved if more input parameter combinations or inclusion

of more related parameters could be tested. The IA values are
close to 1, which explains that more than 99 % of the model
predictions are error free. The best predictions are achieved in
model 3, which has an IA of 0.96 for 2-year (2002–2003)
forecasts. Furthermore, the standard deviation is minimum in
model 3. This means that the approach is mimicking the var-
iation in the test data set with an adequate accuracy.

Nevertheless, comparison of the model performance in
Table 4 clearly shows that model 3 has much better forecast
capabilities. Figure 3 illustrates the scatter plots of the predict-
ed versus observed PM10 emission with different number of
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Fig. 4 Daily time series comparison of the measured and predicted
concentrations of PM10 for a 95-day period in the model 1 (a), 2 (b),
and 3 (c)

Fig. 5 Autocorrelation plot of PM10 for models 1, 2, and 3. The red
dashed lines are called the critical lines

Environ Sci Pollut Res



neurons. The PM10 concentration predicted by optimized
ANN for model 3 was highly correlated with the measured
levels, with R2 of 0.85 and slope of 0.89 (see Fig. 3c). Even
though the predicted levels for models 1 and 2 shown in
Fig. 3a, b were less accurate compared to model 3 optimiza-
tion, coefficients have shown generally a rather good correla-
tion to the measured levels, with R2 of 0.60–0.72 and slope of
0.95–1.05 for models 2 and 1, respectively. Thus, it can be
concluded that the overall performance of model 3 is better
than the other models.

Figure 4 shows the time history graph of the predicted and
observed data for a 95-day period. In appearance, there is
slight scatter between the predictions and measurements in
the three cases. This may be considered as Bnoise^ and could
be caused by some instantaneous, individual incidents. Here
also, the model 3 (see Fig. 4c) seems to perform better than the
other ones (see Fig. 4a, b). Generally, these time series graphs
confirm the superior performance of the approaches in
predicting the studied pollutants’ concentrations. The devel-
oped neural network forecasts satisfactory the PM10 peaks for
all cases, which are supported by the stated statistical predic-
tors, both for the training and the validation data set.

To check whether the models can represent the data, the
autocorrelation function (ACF) was used. ACF is an essential
tool to evaluate the degree of the data dependence and to select
a suitable model reflecting this characteristic. ACF is resulted
by shifting the original PM10 against lags (number of days)
and then valuing the correlation of the original time series with
each one of the moved forms. The autocorrelation function
will vary between −1 and +1. If ACF is close to near ±1, the
data will indicate a stronger correlation. Figure 5 illustrates the
autocorrelation functions for models 1, 2, and 3. The red
dashed lines in the plots (Fig. 5) are called the critical lines
computed as ±2/√N, where N represents the number of the
lags or the number measured data. The autocorrelations were
calculated up to Lag 94. As shown in Fig. 5, approximately

95 % of the data plots fit between the error lines. The auto-
correlations were meaningfully different from zero at approx-
imately 5 % significance level. These results are consistent,
supporting the robustness of the obtained models (see Fig. 4).
This finding was also consistent with results obtained by other
researchers (see Table 5). Kolehmainen et al. (2000) used
hybrid neural network (NN) modeling to obtain the desirable
hourly forecast of PM10 concentrations in Kuopio, Finland,
and reported an IA equivalent to 0.47. Kukkonen et al. (2003)
settled five NN models for the prediction of PM10 and NO2

concentrations in Helsinki, Finland, and reported R2 values of
0.28 to 0.42 and IAvalues of 0.67 to 0.77, relying on the site,
the input configuration, and the training algorithm.
Alternatively, Chaloulakou et al. (2003) have developed an
MLR and premeditated numerous statistical metrics using a
self-governing testing set of data. The reported values of
MAE, RMSE, and R2 were 12.62–16, 16.94–21.9, and
0.47–0.65, respectively. Aldrin and Haff (2005) estimated a
model on log scale on PM10 concentrations for four different
stations. The reported R2 coefficient varied between 0.48 and
0.70. Corani (2005) used feed-forward NNs, pruned NNs, and
lazy learning to forecast daily fine particulate matter in Milan,
Italy, and an IA value of 0.94 and MAE value of 8.55 were
reported. Grivas and Chaloulakou (2006) developed NNs for
the predictions of hourly levels of PM10 in Athens, Greece,
and the R2 values were evaluated between 0.50 and 0.67,
RMSE values between 12.16 and 17.06, and the IA values
between 0.80 and 0.89, based on the location. Papanastasiou
et al. (2007) developed a NN model to air quality in the
medium-sized city of Volos, Greece, and reached an R2

value equal to 0.61, RMSE value 11.37, and IA value equal
to 0.78. In addition, Kurt et al. (2008) reported an error per-
centage of 43 % for prediction of sulfur dioxide (SO2) in
Istanbul, whereas errors between 9 % in our approach. Hrust
et al. (2009) established an empirical NN model to forecast
both gaseous and particulate pollutants in Zagreb, Croatia, and

Table 5 Previous studies on the
forecasting of PM10 levels
through NNs

Area R2 RMSE IA References

Algiers, Algeria 0.60–0.85 13.78–21.13 0.87–0.96 This work

Kuopio, Finland n/a n/a 0.47 Kolehmainen et al. (2000)

Helsinki, Finland 0.28–0.42 n/a 0.67–0.77 Kukkonen et al. (2003)

Athens, Greece 0.47–0.65 16.94–21.9 n/a Chaloulakou et al. (2003)

Oslo, Norway 0.48–0.70 n/a n/a Aldrin and Haff (2005)

Milan, Italy 0.94 n/a 0.94 Corani (2005)

Athens, Greece 0.50–0.67 12.16–17.06 0.80–0.89 Grivas and Chaloulakou (2006)

Volos, Greece 0.61 11.37 0.78 Papanastasiou et al. (2007)

Zagreb, Croatia 0.72 19.3 0.91–0.97 Hrust et al. (2009)

Switzerland 0.72 n/a n/a Barmpadimos et al. (2011)

Makkah, Saudi Arabia 0.52 84 n/a Munir et al. (2013)

RMSE root mean square error, IA index of agreement
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realized a R2 value of 0.72, a RMSE value of 19.3, and an IA
equal to 0.91. Barmpadimos et al. (2011) developed a model
to examine the influence of meteorology on PM10 for each
season of the year. An average value of 0.72 and 0.52 was
measured for the R2 coefficient and MSE, respectively.
Besides, Munir et al. (2013) have settled a model and com-
pared the predicted and the observed PM10 concentrations on
an independent testing dataset. They have reported 0.52 and
84, as the values of R2 coefficient and RMSE, respectively.

On the whole, it is apparent that the ANN with different
neurons, using the simple sigmoid as activation function, re-
sulted as a very effective approach to forecast PM10 absorp-
tions in the urban area of Algiers and can be valuable to city
planners. One limitation of the current model is that even the
NNs have surpassed the classical approaches in terms of per-
formance, the selection of network architecture (neurons,
number of hidden layers, and their interconnection) still a
problem during ANN training stage. The quality of PM10

predictions by the neural network method can be upgraded
by increasing the regularity of extreme values in the training
process, either by including wide observations in the training
data set or by including each periodic case more than a few
times.

Conclusion

In the present study, a modeling effort was conducted in order
to examine the potential of artificial neural network to predict
the daily average PM10 concentrations. The quality and reli-
ability of the developed models were evaluated via several
statistical indexes (RMSE, NMSE, MAE, ARPE, FS, FB,
R2, IA). Comparing the three approaches, the model 3 showed
slightly better skills in forecasting PM10 concentrations than
models 1 and 2.

The overall models’ results, as well as their ability to pre-
dict particulate matter, show an effective use on the operation-
al level for obtaining 24-h forecasts. The presence of quality
meteorological predictions is viewed as a vital premise for the
models’ successful application for real-time forecasts. Series
of sensitivity tests revealed that the models’ stability does not
varymuch from the experimental values. The developed ANN
model can be used not only for predicting PM10 concentration
but also for simulating different situations of PM10 emission
by altering the values of the input variables. The results ob-
tained can be used by the local community and governments
to support policy, and for the development of plans for im-
proving air quality at regional and national levels.
Supplementary researches are planned to include other envi-
ronmental quality pointers such as emission of ozone and acid
oxides, via the economical and industrial indicators, and in
applying new methods for input optimization, such as princi-
pal constituent and correlation analysis.
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