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Two expressed sequence EST-SSRs primers were used to show genetic variation and determine a
potential link of these markers to salt stress tolerance on two contrasting Medicago truncatula
genotypes (Tru 131 tolerant genotype, and Jemalong, sensitive one). The amplification of the DNA were
isolated from 10 individual seedlings for each genotype (tolerant and sensitive) with two Expressed
Sequence Tag-Simple Sequence Repeat (EST-SSR) primers (MTIC 044) and (MTIC 124) produced a total
of 20 amplified products, of which MTIC 124 was polymorphic. The sizes of the alleles detected ranged
from 100 to 280 bp. The EST-SSRs markers were polymorphic with an average of 1.33 alleles per
primers and gave moderate values of polymorphic information content (PIC) that ranged from 0 to 0.267.
The analysis of polymorphism loci for each genotype showed that the tolerant genotype (Tru 131)
population had two alleles; genetic diversity index of 0.32 and PIC value of 0.267. The results obtained
from unigene database of highly similarity proteins sequences with these loci showed that these two
EST- SSRs loci MTIC 044 and MTIC 124 encode GATA transcription factor and cysteine proteinase
inhibitor, respectively and were expressed principally in root in M. truncatula. This data suggest that
these two loci are involved in salt stress tolerance and the two EST-SSR markers used are appropriate
for the studying of salt stress tolerance in M. truncatula.

Key words: Medicago truncatula, salt stress, in silico analysis, expressed sequence tag-simple sequence
repeat (EST-SSR), UniGene / UniProt databases.

INTRODUCTION

Medicago truncatula is widely used as a model legume
plant for understanding tolerance to abiotic stress (Young
and Udvardi, 2009). This legume is of great interest for
sustainable agriculture and ecology. Salinity stress is an

important abiotic stress which significantly affects legume
growth and reduces crop production worldwide. Expressed
sequence tags simple sequence repeats EST-SSRs are
important sources for investigation of genetic diversity and



molecular marker development and they are useful
markers for many applications in genetics and plant
breeding because they show variation in the expressed part
of the genome. EST-SSR primers have been reported to
be less polymorphic compared with genomic SSRs in
crop plants because of greater DNA sequence conservation
in transcribed regions (Scott et al., 2000). The transcription
factors are proteins that modulate gene expression by
binding to specific cis-acting promoter elements, thus
activating or repressing the transcription of target genes
(Romano and Wray, 2003). Transcriptional regulation is
also important for adaptation to abiotic stresses such as
drought, cold, and high salinity, and for protection from
biotic stresses (Shikata et al., 2004). Transcription factors
are grouped into families based on the sequence of their
DNA-binding domains (Luscombe and Thornton, 2002).

Our interest focuses on GATA transcription factors that
are a group of DNA binding proteins broadly distributed in
eukaryotes. In plants, GATA DNA motifs have been impli-
cated in light-dependent and nitrate-dependent control of
transcription (Reyes et al., 2004); they participate in nitro-
gen metabolism (Scazzocchio, 2000) but little information
are available in relation to abiotic stress. Another interest
focuses on enzymes like proteinases that are implicated
in many cellular reactions involving protein degradation,
such as degradation of storage proteins; their action can
be inhibited by cysteine proteinase inhibitors, or cystatins
superfamily. Expression of the proteinase inhibitor genes
is usually limited to specific organs or to particular phases
during plant growth: germination (Botella et al., 1996),
early leaf senescence (Huang et al., 2001), drought
(Waldron et al., 1993) or cold and salt stresses (Pernas
et al., 2000; Van der Vyver et al., 2003). Information is
still limited about the regulation of these inhibitors in
plants and especially in the leguminous M. truncatula and
their possible interaction with proteinases under salt
stress conditions. The aim of this study was to find out if
the two EST-SSR markers used (MTIC 044 and MTIC
124) encoding GATA ftranscriptor factors and cysteine
proteinase inhibitors, respectively, are linked or no to salt
stress tolerance on two contrasting M. truncatula
genotypes (Tru 131 the tolerant genotype and Jemalong
the sensitive one).

MATERIALS AND METHODS

Plant material

Recently harvested seeds of two contrasting genotypes of M.
truncatula to salt stress, Tru 131 (Tolerant) provided by the institute
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IDGC BelAbes (Algeria) and Jemalong (sensitive) as reference
genotype, were used in this work for molecular characterization
using the two EST-SSR markers.

DNA Extraction and PCR amplification

Total genomic DNA was extracted for each genotype, from young
seedling after 7 days of germination (10 seeds by genotype). DNA
was isolated using a cetyl trimetrhylammonium bromide (CTAB)
method adapted from Udupa et al. (1999). The two loci (EST-SSRs)
located on the chromosome 3 (LG3) (Table 1), were chosen from
the set of microsatellites developed by Journet et al. (2001) in M.
truncatula (2n=16) available in GenBank EST
(http://www.ncbi.nlm.nih.gov/dbEST/). Amplification of genomic
DNA was done according to Udupa et al. (1999) in a PCR reactions
(10 pL) containing 50 ng of template DNA, 1 x PCR Buffer, 0.2 mM
dNTPs, 10 pmole of each primer and 1 unit of Taq polymerase. The
amplification profile consisted of an initial period of DNA
denaturation and Taq polymerase activation at 94°C for 2 min,
followed by 35 cycles of 94°C for 30 s, 55°C for 30 s, and 72°C for
45 s. A final extension was done at 72°C for 7 min before cooling to
4°C. PCR products were resolved on a 6% denaturing polyacrylamide
gel. After electrophoresis, the DNA bands were stained with
ethidium bromide and visualized by UV. For each of the defined
loci, SSR allelic composition was determined for each genotype.

Polymorphism information content (PIC) values which indicate
the ability to distinguish between genotypes for each primer
combination for polymorphic bands was calculated with the
following formula (Anderson et al., 1993): PIC = 1 -Z P?j [Pij is the
frequency of the allele i revealed using the primer jl. The genetic
diversity at each locus was calculated as follows: Hi=1 - X Pi2, with
H; and Pi denoting the genetic variation index and the frequency of
the number of alleles at the locus, respectively (Nei, 1973). In order
to find highly similarity sequences with EST SSRs, we used
UniGene database (http://www.ncbi.nlm.nih.gov/UniGene/) to
determine the selected proteins similarities involved in variability of
salt stress tolerance and UniProt database
(http://www.uniprot.org/uniprot/) to determine their principal
function.

RESULTS AND DISCUSSION

Two EST- SSRs markers of M. truncatula (legume
model) were used to test polymorphism between two
contrasting genotypes to salt stress (Tru 131 the tolerant
genotype and Jemalong the sensitive one). Results show
that the MTIC 124 locus was more polymorphic (Table 1).
The amplification of the DNA isolated from 10 individual
seedlings for each genotype produced a total of 20 amplified
products (Figures 1 and 2). The sizes of the alleles
detected ranged from 100 to 280 bp. The highest number
of polymorphic bands was observed with MTIC124 locus,
located on chromosome 3(LG3) and at this locus, two
different alleles were observed in the tolerant genotype
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Table 1. EST-SSR markers used for variability analysis of two contrasting genotypes of M. truncatula (Tru 131 tolerant genotype and Jemalong the sensitive one) to salt stress

EST SSR Forward (F) and reverse Repeat Annealing temperature
LG . . GenBank EST Ref
markers (R) primers (5" - 3) motif for PCR (°C) ensan name elerences
MTIC 044 3 F: CGCGCCTTCTAGTTCTCTC AcC]? 55 MtBC10F10F1 MtBC Medicago truncatula cDNA clone
R:GGGGTCTCTCTTTCTTGGA MtBC10F10 T3, mRNA sequence Journet et al. (2001)
Medicago truncatula ESTs
F: TGTCACGAGTGTTGGAATTTT MtBC32B02R1 MtBC Medi la cDNA cl from endomycorrhizal roots
MTIC 124 3 GTCACGAGTGTTGG o) 55 tBC32B0. tBC Medicago truncatula ¢ clone y

R: TGGGTTGTCAATAATGCTCA

MtBC32B02 T7, mRNA sequence

LG, Linkage group.
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19 20

Figure 1. EST-SSR markers profile of the two contrasting genotypes of M.truncatula to salt stress [Jemalong
‘sensitive’: 1 to 10] and [Tru 131 ‘ tolerant’ : 11 to 20] generated by the primer MTIC 044. M, Molecular weight

marker.

(Tru 131) with genetic diversity index of 0.32 and
PIC value of 0.267 (Table 2). The locus MTIC 044
located on the same chromosome 3 yielded one
allele. The two EST-SSRs markers used were
polymorphic with an average of 1.33 alleles per
primers and gave moderate values of polymorphic

information content (PIC) that ranged from 0 to
0.267. The results of EST profiles (Mtr.1896 -
MTR_3g109760: GATA transcription factor and
Mtr.5874 - MTR _3g043750: cysteine proteinase
inhibitor) obtained from UniGene database which
are of highly similarity proteins sequences to these

loci showed that these two EST- SSRs loci(MTIC
044 and MTIC 124) encode GATA transcription
factor and cysteine proteinase inhibitor, respec-
tively, and were expressed principally in root in
M.truncatula (Table 2). Their principal function was
obtainedfrom UniProtdatabase. The EST-SSR locus
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Figure 2. EST-SSR markers profile of the two contrasting genotypes of M. truncatula to salt stress [stress [Jemalong ’sensitive’: 1 to 10] and
[Tru 131 ‘tolerant’ : 11 to 20] generated by the primer MTIC 124 (B). M, Molecular weight marker.

Table 2. Results of the EST-SSR markers revealed in the two contrasting genotypes of M. truncatula (Tru 131 tolerant and Jemalong sensitive one) to salt stress and data obtained from UniGene
and UniProt databases of highly similarity proteins sequences with EST SSR markers used .

Genotypes EST SSRmarkers S.Z N.A N.G H; PIC  Selected Protein Similarities Identity % G.A R.E
:]rglrjn;?c:n(gT()S) MTIC 044 10 1 1 0 0 GATA transcription factor (MTR_3g109760) mRNA, complete cds 100 XP_003603626.1

Root
Tru 131 (T) . . I
Jemalong (S) MTIC 124 10 2 2 0.32 0.26 Cysteine proteinase inhibitor (MTR_3g043750) mRNA, complete cds 100 XP_003599710.1

T, Tolerant; S, Sensitive. S.Z, Sample size; N.A, Number of alleles; N.G. number of genotypes. G.A, Gene bank accession; R.E, restricted expression; PIC, polymorphic information content; H;,
Genetic diversity; Highly informative: (PIC > 0.50); moderately informative: (0.25 < PIC <0.50) and slightly informative: (PIC < 0.25), non informative: (PIC = 0).
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(MTIC 124) was more variable than the MTIC 044 locus
and this variation was observed exclusively in the tolerant
genotype (Tru 131); this information suggests the direct
involvement of cysteine proteinase inhibitor in seedling
development under salinity, especially in root.

Cysteine proteinases play an essential role in plant
growth but also, in accumulation of seed storage proteins
and in the response to biotic and abiotic stresses
(Grudkowska and Zagdanska, 2004). Their action can be
inhibited by proteinase inhibitors induced by abiotic
stress. Amouri et al. (2014) showed that the tolerant
genotype (Tru 131) had a higher storage protein content
and increased root growth than the sensitive one
(jemalong) suggesting the low synthesis of the cysteine
proteinsae inhibitor (cystatins) in the tolerant genotype
Tru 131 compared to Jemalong. Interestingly, this predicted
datacould be confirmed attranscriptomiclevel. Yamaguchi-
Shinozaki et al. (1992) and Koizumi et al. (1993) noted
that the clones rd19 and rd21 encoding different cysteine
proteinases in Arabidopsis thaliana were induced by
water deficit and were also responsive to salt stress.
Several studies suggest that plant cystatins are responsive
to abiotic stresses such as drought, salt, abscisic acid
and cold treatment (Gaddour et al., 2001; Van der Vyver
et al., 2003; Diop et al., 2004; Massonneau et al., 2005;
Christova et al., 2006), although they have also been
detected in vegetative tissues, including roots and leaves
(Lim et al., 1996; Pernas et al., 2000).

In A. thaliana, two cysteine proteinase inhibitors (cys-
tatins) designated AtCYSa and AtCYSb, were charac-
terized. The northern blot analyses showed that the
expressions of these two cystatins gene in cells and
seedlings were strongly induced by multiple abiotic
stresses from high salt, drought, oxidant, and cold (Zhang
et al.,, 2008), suggesting the same mechanism in the
legume model (M. truncatula). However, The GATA
transcription factor encoded by the EST-SSR marker
(MTIC 044), was not variable, wich explains the indirect
involving activation of gene expression in relation to salt
stress tolerance and may be implicated in common
regulation network of gene expression related to plant
growth and development. Members of GATA transcription
factor family that have a role in development are found
throughout eukaryotes, including plants, fungi,
invertebrates and vertebrates. Little information was
available in plant under abiotic stress (Haenlin and
Waltzer, 2004). Sugimoto et al. (2003) illustrate that the
family GATA transcription factor target genes respond to
stress in tobacco.

Conclusion

From all data analysis, we can propose that the two EST-
SSR markers used in our study are suitable for the study

of salt stress tolerance in the plant model (M. truncatula).
The MTIC 124 locus that encode cysteine proteinase
inhibitor (cystatins) is more polymorphic and implicated

directly in salt tolerance than the MTIC 044 locus that
encode GATA transcription factor. These two loci could
be used for studying transcriptional regulation of gene
expression involved in salt stress tolerance in M.
Truncatula.
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