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molecular marker development and they are useful 
markers for many applications in genetics and plant 

breeding because they show variation in the expressed part 
of the genome. EST-SSR primers have been reported to 
be less polymorphic compared with genomic SSRs in 
crop plants because of greater DNA sequence conservation 
in transcribed regions (Scott et al., 2000). The transcription 
factors are proteins that modulate gene expression by 
binding to specific cis-acting promoter elements, thus 
activating or repressing the transcription of target genes 
(Romano and Wray, 2003). Transcriptional regulation is 
also important for adaptation to abiotic stresses such as 
drought, cold, and high salinity, and for protection from 
biotic stresses (Shikata et al., 2004). Transcription factors 
are grouped into families based on the sequence of their 
DNA-binding domains (Luscombe and Thornton, 2002).  

Our interest focuses on GATA transcription factors that 
are a group of DNA binding proteins broadly distributed in 
eukaryotes. In plants, GATA DNA motifs have been impli-
cated in light-dependent and nitrate-dependent control of 
transcription (Reyes et al., 2004); they participate in nitro-
gen metabolism (Scazzocchio, 2000) but little information 
are available in relation to abiotic stress. Another interest 
focuses on enzymes like proteinases that are implicated 
in many cellular reactions involving protein degradation, 
such as degradation of storage proteins; their action can 
be inhibited by cysteine proteinase inhibitors, or cystatins 
superfamily. Expression of the proteinase inhibitor genes 
is usually limited to specific organs or to particular phases 
during plant growth: germination (Botella et al., 1996), 
early leaf senescence (Huang et al., 2001), drought 
(Waldron et al., 1993) or cold and salt stresses (Pernas 
et al., 2000; Van der Vyver et al., 2003). Information is 
still limited about the regulation of these inhibitors in 
plants and especially in the leguminous M. truncatula and 
their possible interaction with proteinases under salt 
stress conditions. The aim of this study was to find out if 
the two EST-SSR markers used (MTIC 044 and MTIC 
124) encoding GATA transcriptor factors and cysteine 
proteinase inhibitors, respectively, are linked or no to salt 
stress tolerance on two contrasting M. truncatula 
genotypes (Tru 131 the tolerant genotype and Jemalong 
the sensitive one). 
 
 
MATERIALS AND METHODS 
 
Plant material 
 
Recently harvested seeds of two contrasting genotypes of M. 
truncatula to salt stress, Tru 131 (Tolerant) provided by the institute 
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IDGC BelAbes (Algeria) and Jemalong (sensitive) as reference 
genotype, were used in this work for molecular characterization 
using the two EST-SSR markers. 
 
 
DNA Extraction and PCR amplification 
 
Total genomic DNA was extracted for each genotype, from young 
seedling after 7 days of germination (10 seeds by genotype). DNA 
was isolated using a cetyl trimetrhylammonium bromide (CTAB) 
method adapted from Udupa et al. (1999). The two loci (EST-SSRs) 
located on the chromosome 3 (LG3) (Table 1), were chosen from 
the set of microsatellites developed by Journet et al. (2001) in M. 
truncatula (2n=16) available in GenBank EST 

(http://www.ncbi.nlm.nih.gov/dbEST/). Amplification of genomic 
DNA was done according to Udupa et al. (1999) in a PCR reactions 
(10 μL) containing 50 ng of template DNA, 1 × PCR Buffer, 0.2 mM 
dNTPs, 10 pmole of each primer and 1 unit of Taq polymerase. The 
amplification profile consisted of an initial period of DNA 
denaturation and Taq polymerase activation at 94°C for 2 min, 
followed by 35 cycles of 94°C for 30 s, 55°C for 30 s, and 72°C for 
45 s. A final extension was done at 72°C for 7 min before cooling to 
4°C. PCR products were resolved on a 6% denaturing polyacrylamide 
gel. After electrophoresis, the DNA bands were stained with 
ethidium bromide and visualized by UV. For each of the defined 
loci, SSR allelic composition was determined for each genotype.  

Polymorphism information content (PIC) values which indicate 
the ability to distinguish between genotypes for each primer 
combination for polymorphic bands was calculated with the 
following formula (Anderson et al., 1993): PIC = 1 -Σ P2ij [Pij is the 
frequency of the allele i revealed using the primer j]. The genetic 
diversity at each locus was calculated as follows: Hi = 1 - Σ Pi2, with 
Hi and Pi denoting the genetic variation index and the frequency of 
the number of alleles at the locus, respectively (Nei, 1973). In order 
to find highly similarity sequences with EST SSRs, we used 
UniGene database (http://www.ncbi.nlm.nih.gov/UniGene/) to 
determine the selected proteins similarities involved in variability of 
salt stress tolerance and UniProt database 
(http://www.uniprot.org/uniprot/) to determine their principal 
function.  
 
 
RESULTS AND DISCUSSION 
 
Two EST- SSRs markers of M. truncatula (legume 
model) were used to test polymorphism between two 
contrasting genotypes to salt stress (Tru 131 the tolerant 
genotype and Jemalong the sensitive one). Results show 
that the MTIC 124 locus was more polymorphic (Table 1). 
The amplification of the DNA isolated from 10 individual 
seedlings for each genotype produced a total of 20 amplified 
products (Figures 1 and 2). The sizes of the alleles 
detected ranged from 100 to 280 bp. The highest number 
of polymorphic bands was observed with MTIC124 locus, 
located on chromosome 3(LG3) and at this locus, two 
different alleles were observed in the tolerant genotype

  
*Corresponding author. E-mail: amouri.adel@univ-oran.dz. 
 
Abbreviations: EST-SSR, Expressed Sequence Tag-Simple Sequence Repeat; LG, Linkage Group; CTAB, Cetyl Trimetrhylammonium 
Bromide; PIC, Polymorphism information content; Hi, Genetic diversity at each locus.  
 
Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 
International License 
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(MTIC 124) was more variable than the MTIC 044 locus 
and this variation was observed exclusively in the tolerant 
genotype (Tru 131); this information suggests the direct 
involvement of cysteine proteinase inhibitor in seedling 
development under salinity, especially in root.  

Cysteine proteinases play an essential role in plant 
growth but also, in accumulation of seed storage proteins 
and in the response to biotic and abiotic stresses 
(Grudkowska and Zagdanska, 2004). Their action can be 
inhibited by proteinase inhibitors induced by abiotic 
stress. Amouri et al. (2014) showed that the tolerant 
genotype (Tru 131) had a higher storage protein content 
and increased root growth than the sensitive one 
(jemalong) suggesting the low synthesis of the cysteine 
proteinsae inhibitor (cystatins) in the tolerant genotype 
Tru 131 compared to Jemalong. Interestingly, this predicted 
data could be confirmed at transcriptomic level. Yamaguchi-
Shinozaki et al. (1992) and Koizumi et al. (1993) noted 
that the clones rd19 and rd21 encoding different cysteine 
proteinases in Arabidopsis thaliana were induced by 
water deficit and were also responsive to salt stress. 
Several studies suggest that plant cystatins are responsive 
to abiotic stresses such as drought, salt, abscisic acid 
and cold treatment (Gaddour et al., 2001; Van der Vyver 
et al., 2003; Diop et al., 2004; Massonneau et al., 2005; 
Christova et al., 2006), although they have also been 
detected in vegetative tissues, including roots and leaves 
(Lim et al., 1996; Pernas et al., 2000).  

In A. thaliana, two cysteine proteinase inhibitors (cys-
tatins) designated AtCYSa and AtCYSb, were charac-
terized. The northern blot analyses showed that the 
expressions of these two cystatins gene in cells and 
seedlings were strongly induced by multiple abiotic 
stresses from high salt, drought, oxidant, and cold (Zhang 
et al., 2008), suggesting the same mechanism in the 
legume model (M. truncatula). However, The GATA 
transcription factor encoded by the EST-SSR marker 
(MTIC 044), was not variable, wich explains the indirect 
involving activation of gene expression in relation to salt 
stress tolerance and may be implicated in common 
regulation network of gene expression related to plant 
growth and development. Members of GATA transcription 
factor family that have a role in development are found 
throughout eukaryotes, including plants, fungi, 
invertebrates and vertebrates. Little information was 
available in plant under abiotic stress (Haenlin and 
Waltzer, 2004). Sugimoto et al. (2003) illustrate that the 
family GATA transcription factor target genes respond to 
stress in tobacco. 
 
 
Conclusion 
 
From all data analysis, we can propose that the two EST- 
SSR markers used in our study are suitable for the study 
of salt stress tolerance in the plant model (M. truncatula). 
The MTIC 124 locus that encode cysteine proteinase 
inhibitor (cystatins) is  more  polymorphic  and  implicated  

 
 
 
 
directly in salt tolerance than the MTIC 044 locus that 
encode GATA transcription factor. These two loci could 
be used for studying transcriptional regulation of gene 
expression involved in salt stress tolerance in M. 
Truncatula. 
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