People's Democratic Republic of Algeria
 Ministry of Higher Education and Scientific Research.
 University of Oran 1 Ahmed Ben Bella
 Faculty of Natural and Life Sciences

Handout
Biophysics

Courses and corrected exercises
2nd year Licence, Faculty of Natural and Life Sciences

Presented By
Dr Mokdad Naouel MCA

The general aim of the biophysics course is to enable students in the natural and life sciences to acquire a basic understanding of physics for the various applications in biology, which is a science of the living environment.

In physics, the observation of a phenomenon is followed by reasoning to write down the law of the phenomenon studied. This important approach deserves to be developed in all fields of science, particularly in biology and the medical sciences. Biophysics is an important subject for 2nd year and Masters students. It's a selective subject, as it's one of the few disciplines that requires real thinking. The aim of this handout is to present the various physical phenomena relevant to biology. This handout is spread over several chapters in each chapter we present a summary of the course followed by examples and exercises that we covered during the 2018-2019 year in the three biology pathways (biological sciences, food sciences and biotechnologies) in the biology department. This course handout also presents a summary of the courses we taught between 1998-2019, initially as a lecturer and then as a module leader in the Department of Natural and Life Sciences at the Université d'Oran 1 Ahmed Ben Bella.

I would also like to thank the active biophysics team, N.Touhami, N.Guettari, A.Bechlaghem and H.Benmaaza for their fruitful participation in the creation of the tutorial sheets for the 2018/2019 year.

Table of contents

Reminders: Dimensional analyses
\qquad
Chapter I: States of matter. 11
Introduction 11
1-2- Gases: part of the kinetic theory of gases and equation of state of perfect gases 11
1-3- Liquids: structures of water, dissolution 15
1-4- Solids: different structures 16
1-5-Intermediate states: glasses, liquid crystals, granular states, deformable polymer 17
Chapter II: General information on aqueous solutions
2-1 Study of solutions: classifications of solutions. 23
2-2 Concentrations: mole fraction, molarity, weight concentration, os molarity, equivalent concentration 23
2-3 Solubility 27
2-4 Electrolyte solutions: electrical conductivity, physical and chemical properties of electrolytes 29
Chapter III: Surface phenomenon. 40
3-1- Surface tension: biological definition, measurement and application 40
3-2 Capillarity phenomenon: definition, measurement and biological applications. 42
3-3 Surface tension force (liquid-gas interfaces): definition, measurements and biological applications 43
3-4 Adsorption. 46
Chapter IV: Diffusion phenomena 50
4-1 Diffusion 50
4-2 Osmosis phenomenon and osmotic pressure: definition, measurements and biological applications. 55
4-3 Permeability: definition, measurements and biological applications. 58
Chapter V: Viscosity studies 67
5-1 Laminar and turbulent flow. 67
5-2 Viscous resistance and viscosity measurements. 68
5-3 Sedimentation. 71
References 76

Reminder: Dimensional analysis

1-Introduction :

The measurement of any physical quantity is expressed with a unit. A distinction is made between fundamental units, which are used to create a coherent system of units, and derived units, which can be expressed in relation to the fundamental units.

Example: the International System (SI) is based on the meter, kilogram, second and ampere, and has been called M.K.S.A (meter, kilogram, second, ampere), the kelvin and a few other units in specialized fields. The C.G.S. system (centimeter, gram and second) is still used in some countries.

2- The basic units of the international system (S.I) :

Quantity	Unit	Symbol	Designation	Formula and dimension
Length	Meter	M	L, l	$[\mathrm{l}]=\mathrm{L}$
Mass	Kilogram	Kg	m, M	$[\mathrm{m}]=\mathrm{M}$
Time	Second	S	$\mathrm{T}, \tau, \mathrm{t}$	$[\mathrm{t}]=\mathrm{T}$
Electrical current	Ampere	A	i, I	$[\mathrm{i}]=\mathrm{I}$
Thermodynamic	Kelvin	K	T	
temperature				
Quantity of matter	Mol		n	
Luminous intensity	Candela	Cd	I	

Additional units :
Radian (rd) for flat angle, steradian (sr) for solid angle.
3- The derived units:
A few mechanical and electrical units are shown here in the form of a table.

Physical quantity	Formula and dimension	Expression in basic unit	Unit name and symbol
Area (S)	$[\mathrm{S}]=\left[\mathrm{l}^{2}\right]=\mathrm{L}^{2}$	$\mathrm{~m}^{2}$	
Volume (V)	$[\mathrm{V}]=\left[l^{3}\right]=\mathrm{L}^{3}$	$\mathrm{~m}^{3}$	
Speed (v)	$[\mathrm{v}]=\frac{[l]}{[t]}=\mathrm{L} \cdot \mathrm{T}^{-1}$	$\mathrm{~m} \cdot \mathrm{~s}^{-1}$	
Force (F)	$[\mathrm{F}]=[\mathrm{m} \cdot \mathrm{a}]=[\mathrm{m}] \cdot[\mathrm{a}]$ $\mathrm{Kg} \cdot \mathrm{m} \cdot \mathrm{s}^{-2}$	Newton (N)	
	$=\mathrm{MLT}^{-2}$	$\mathrm{~m} \cdot \mathrm{~s}^{-2}$	
Acceleration (a)	$[\mathrm{a}]=\frac{[v]}{[t]}=\mathrm{LT}^{-1} / \mathrm{T}$ $=\mathrm{LT}^{-2}$		

Work, energy	$\begin{aligned} {[\mathrm{w}] } & =[\mathrm{F}] \cdot[1] \\ & =\mathrm{M} \cdot \mathrm{~L}^{2} \cdot \mathrm{~T}^{-2} \end{aligned}$	$\mathrm{Kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-2}$	Joule (j)
Power	$\begin{aligned} {[\mathrm{p}]=\frac{[w]}{[t]} } & =\mathrm{M} \mathrm{~L}^{2} \mathrm{~T}^{-2} / \mathrm{T} \\ & =\mathrm{M} \mathrm{~L}^{2} \mathrm{~T}^{-3} \end{aligned}$	$\mathrm{Kg} \mathrm{m} \mathrm{s}^{-3}$	Watt(w)
Electric charge	$\begin{aligned} {[\mathrm{q}] } & =[\mathrm{i} . \mathrm{t}] \\ & =\mathrm{I} \mathrm{~T} \end{aligned}$	A.S	Coulomb (C)
Potential difference	$[\mathrm{v}]=\frac{[p]}{[i]}=\mathrm{ML}^{2} \mathrm{~T}^{-3} / \mathrm{I}$	$\mathrm{Kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-3} \cdot \mathrm{~A}^{-1}$	Volts (v)
Resistance	$[\mathrm{R}]=\frac{[V]}{[i]}=\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{I}^{-2}$	$\mathrm{Kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-3} \cdot \mathrm{~A}^{-2}$	Ohm (Ω)

4- Physical constants in SI:

Constant	symbol	Most precise value
Perfect gas constant	R	$8.3143 \mathrm{J} .\mathrm{~K}{ }^{-1} \cdot \mathrm{~mol}^{-1}$ unit in (SI)
		When pressure is expressed in atmosphere atm and volume in liter, the value of R is $\mathrm{R}=0.082 \mathrm{~atm} .1 \mathrm{~mol}-1 . \mathrm{k}-1$
Avogadro number	NA	$6.02214 \times 10^{23} \mathrm{~mol}^{-1}$
Boltzmann constant	k_{B}	$1.380648 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Electric charge	e	$1.602110^{-19} \mathrm{C}$

5- Formula consistency:
When we have a relationship of equality between quantities (for example, when solving an exercise) we can check the plausibility, or coherence, of this relationship, by verifying that the two dimensions on either side are identical.

Application :

Verification of the relationship: $\mathrm{E}=\mathrm{mc}^{2}$ between mass and energy
Energy $=$ work $=$ force x displacement
Hence $[\mathrm{E}]=[\mathrm{F}] .[1]=\mathrm{MLT}^{-2} . \mathrm{L}=\mathrm{ML}^{2} \mathrm{~T}^{-2}$
Usual prefixes and non-system units :

Factor	10^{12}	10^{9}	10^{6}	10^{3}	10^{-3}	10^{-6}	10^{-9}	10^{-12}
Prefix	Tera	Giga	Mega	Kilo	Milli	Micro	Nano	Pico
Symbol	T	G	M	K	m	μ	n	P

Name
Symbol
Value in SI
Angstrom
A°
$1 \mathrm{~A}^{\circ}=10^{-10} \mathrm{~m}$

Electron volt	eV	$1 \mathrm{eV}=1.6021910^{-19}$ joule
Calorie	Cal	$1 \mathrm{cal}=4.1867$ joule
Normal atmosphere	Atm	$1 \mathrm{~atm}=1.01325 \times 10^{5} \mathrm{~Pa}$
Tower	mmHg	$1 \mathrm{mmHg}=133.3 \mathrm{~Pa}$
Bar	Bar	$1 \mathrm{bar}=10^{5} \mathrm{~Pa}$
Poise	P	1poise $=0.1 \mathrm{~Pa} . \mathrm{s}$

The pascal times the second is the unit of dynamic viscosity in the International System. It is a derived unit; in terms of base units it is expressed as follows: $1 \mathrm{Pas}=1 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$. The pascal times the second is called the poiseuille.

Exercises :

Exercise 1 :

Using simple formulas, establish the dimensions and fundamental units of the following quantities: velocity v , acceleration a, force F , surface S , volume V , density p, energy E , pressure P , charge q .

Exercise2 :

From the definition formulas, determine the dimension and then the imity in the S.I. of the following physical constants:
1/ The perfect gas constant R defined by $\mathrm{PV}=\mathrm{nRT}$ where n is the number of moles of gas, T the temperature, P the pressure, V the volume.

2/ Boltzmann's constant k defined by the internal energy of a monoatomic perfect gas molecule at temperature $\mathrm{T}: \mathrm{U}=(3 / 2) \mathrm{kT}$

3/ Avogadro's constant, where $k=R / N_{a}, N_{A}$ is Avogadro's number.
4/ Faraday's constant F , defined by $\mathrm{F}=N_{A} \mathrm{e}$, where e is the elementary charge.

Exercise 3:

1/ The value of the frictional force exerted by a fluid on a sphere of radius r moving at low speed v relative to the fluid is given by Stokes' relation:
$F=6 \pi \eta \mathrm{rv}$ where η is the viscosity of the fluid. Establish the dimensional equation of η.
2/ The unit of η in the CGS system is the poise. Its unit in the S.I. is the poiseuille.
Find the conversion coefficient between the two units?

Exercise 4:

1/ The value of the frictional force exerted by a fluid on a sphere of radius r moving at low speed v relative to the fluid is given by Stokes' relation:
$[A]=M^{-2} L^{2} T^{-1}$
This physical quantity is calculated from the equation: $\mathrm{A}=\alpha \mathrm{v}^{2} \mathrm{~F}^{2}+\beta \mathrm{p}^{-1} \mathrm{mg}^{-3}$ where F is a force, v a velocity, m a mass, p a pressure and g the acceleration of gravity.
State the dimension of α and β so that the equation is dimensionally correct.

Exercise 5:

The frequency of vibration of a drop of water can be written as :

$$
f=k R^{\alpha} \rho^{\beta} \sigma^{\gamma}
$$

where k is a dimensionless constant. R is the radius of the drop, ρ its density, σ is the surface tension defined by a force per unit length.
Use dimensional analysis to determine the values of the parameters α, β et γ.

Biophysics; Course and corrected exercises, 2nd year Biology degree Answers:
$\underline{\text { Exercise1: }} v=\frac{l}{t}=>[v]=\frac{[l]}{[t]}=\frac{L}{T}=L T^{-1}\left(\mathrm{~ms}^{-1}\right)$.
$x=\frac{1}{2} a t^{2}=>[a]=\frac{[x]}{\left[t^{2}\right]}=L T^{-2}\left(m s^{-2}\right)$
$F=m \cdot a=>[F]=[m] \cdot[a]=M \cdot L T^{-2}\left(\mathrm{kgms}^{-2}\right)$
$S=l^{2}=>[S]=[l] .[l]=L^{2}\left(m^{2}\right)$
$V=l^{3}=>[V]=[l] .[l] \cdot[l]=L^{3}\left(m^{3}\right)$
$f=\frac{m}{V}=>[f]=\frac{[m]}{[v]}=M L^{-3}\left(\mathrm{kgm}^{-3}\right)$
$E=\frac{1}{2} m v^{2}=>[E]=[m] .[v]^{2}=M \cdot L^{2} \cdot T^{-2}\left(\mathrm{kgm}^{2} \mathrm{~s}^{-2}\right)$ or Joule
$P=\frac{F}{S}=>[P]=\frac{[F]}{[S]}=\frac{M \cdot L T^{-2}}{L^{2}}=M \cdot L^{-1} T^{-2}\left(\mathrm{kgm}^{-1} \mathrm{~s}^{-2}\right)$
$Q=i . t=>[Q]=[i] .[t]=I . T(A . s)$

Exercice 2:

$$
P V=n R T
$$

$$
[R]=\frac{[P][V]}{[n][T]}=M L^{-1} T^{-2} \cdot \frac{L^{3}}{\operatorname{mol} \theta}=
$$

M $L^{2} T^{-2} \mathrm{~mol}^{-1} \theta^{-1}$ Unité ($\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$ mole ${ }^{-1} \mathrm{~K}^{-1}$) ou bien $\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$

$$
\left(\mathrm{R}=8,314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)
$$

Or $\quad \mathrm{R}=0,082 \mathrm{l} \mathrm{atm} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
2) $U=\frac{3}{2} k T$

$$
[k]=\frac{[U]}{[T]}=\frac{M L^{2} T^{-2}}{\theta}=M L^{2} T^{-2} \theta^{-1}\left(\text { Joule } K^{-1}\right)
$$

3) $R=N a k$

$$
\begin{gathered}
{[N a]=\frac{[R]}{[k]}=\frac{M L^{2} T^{-2} \mathrm{~mol}^{-1} \theta^{-1}}{M L^{2} T^{-2} \theta^{-1}}} \\
{[N a]=\mathrm{mol}^{-1}}
\end{gathered}
$$

4) $[F]=[N a] .[e]=\operatorname{mol}^{-1} . I \cdot T \quad\left(\mathrm{~mol}^{-1} A . s\right)$

Biophysics; Course and corrected exercises, 2nd year Biology degree Exercice 3 :

$$
\begin{aligned}
& F=6 \pi n r v \\
& {[n]=\frac{[F]}{[r][v]}=\frac{M L T^{-2}}{L L T^{-1}}} \\
& {[n]=M L^{-1} T^{-1}}
\end{aligned}
$$

$$
\text { unité }\left(\mathrm{kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}\right. \text { poiseuille) }
$$

$$
C G S \mathrm{cmg} \mathrm{~s}
$$

1 poiseuille $=\left(10^{3} \mathrm{~g}_{\left.10^{-2} \mathrm{~cm}^{-1} \mathrm{~s}^{-1}\right)=10 \mathrm{~g} \mathrm{~cm}^{-1} \mathrm{~s}^{-1} .}\right.$
1 poiseuille $\rightarrow 10$ poise \quad Knowing that poise is $\mathrm{g} \mathrm{cm}^{-1} \mathrm{~s}^{-1}$

Exercice 4 :

$$
\begin{aligned}
& {[A]=M^{-2} L^{2} T^{-1}} \\
& \begin{aligned}
{\left[\alpha v^{2} F^{2}\right] } & =[\alpha] \cdot[v]^{2}[F]^{2} \\
& =[\alpha] \cdot\left(L T^{-1}\right)^{2}\left(M L T^{-2}\right)^{2} \\
& =[\alpha] L^{2} T^{-2} M^{2} L^{2} T^{-4}
\end{aligned}
\end{aligned}
$$

$$
M^{-2} L^{2} T^{-1}=[\alpha] . L^{4} T^{-6} M^{2}
$$

$$
[\alpha]=M^{-2} L^{2} T^{-1} L^{-4} T^{6} M^{-2}
$$

$$
[\alpha]=L^{-2} T^{5} M^{-4}
$$

$$
[A]=[\beta][P]^{-1}[m][g]^{-3}
$$

$$
M^{-2} L^{2} T^{-1}=[\beta] .\left(M L^{-1} T^{-2}\right)^{-1} M[g]^{-3}
$$

$$
=[\beta] \cdot M^{-1} L T^{2} M L^{-3} T^{6}
$$

$$
M^{-2} L^{2} T^{-1}=[\beta] \cdot L^{-2} T^{8}
$$

$$
[\beta]=M^{-2} L^{2} T^{-1} L^{2} T^{-8}
$$

$$
[\beta]=M^{-2} L^{4} T^{-9}
$$

Biophysics; Course and corrected exercises, 2nd year Biology degree

Chapter1 : The states of matter :

1- Introduction :

In matter, molecules are subject to two different abilities: the first is the ability to assemble, essentially due to intermolecular forces of attraction (Van der Waals forces) of the $\mathrm{F}=\mathrm{K} / \mathrm{r}^{7}$ type, essentially electrostatic due to the presence of charges (ionization) or dipoles, or intermolecular forces of repulsion (Born or Paul forces) of the $\mathrm{F}=\mathrm{K} / \mathrm{r}^{13}$ type, resulting in the entanglement of electronic clouds. The other ability is dispersion, due to the phenomenon of "thermal", disordered agitation (Brownian motion). Average kinetic energy is proportional to absolute temperature (the constant of proportionality is Boltzmann's constant $\mathrm{k}=1.38 \quad 10^{-23}$). The total energy of a molecule is $\mathrm{E}_{\mathrm{T}}=\mathrm{E}_{\mathrm{L}}+\mathrm{E}_{\text {TRANS }}$

The macroscopic behavior of a population of molecules depends essentially on the respective importance of binding (E_{L}) and translational ($\mathrm{E}_{\text {TRANS }}$) energies.

Following the prevailing trend, we distinguish three fundamental physical states of matter: solid, liquid and gas.

If the binding energy $\mathrm{E}_{\mathrm{L}} \ggg \mathrm{E}_{\text {TRANS }}$, we have a solid state with no dispersion and therefore an ordered arrangement of atoms.

If the binding energy $\mathrm{EL} \lll \mathrm{EC}$ we have a gaseous state and therefore a dispersion of molecules with no shape specific to the fluid.

If the binding energy EL $\sim \mathrm{EC}$ we have a liquid state no dispersion no shape proper to the fluid.

2- Gases:

The gaseous state is a dispersed state. It's perfect disorder. The distance between molecules is very great, so intermolecular bonds are often negligible. There are two types of gas: perfect and real.

2-1 Real gases :

Molecules are more concentrated (high pressure), occupying a non-negligible part of the available volume (possible interactions). It's a non-condensed state (non-coherent or dispersed), totally disordered, with no form of its own: it's a fluid.

2-2 Perfect gases :

Molecules are weakly concentrated (low pressure) and have small volumes relative to the available volume (molecules, no interactions between them).

2-2-1 Pressure of a perfect gas :

Biophysics; Course and corrected exercises, 2nd year Biology degree

The pressure of a perfect gas is due to the impact of the gas molecules on the walls of the container in which it is contained. It is proportional to temperature T and to the number of molecules per unit volume - Boyle Mariotte's law.P V=n R T

With R: the perfect gas constant $=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, V : volume in m^{3}, T : temperature in K, n : number of moles, P : pressure in pascals.

Let's consider two gases G1 and G2 respectively with two concentrations n1 and n2.

For gas G1 we have $\quad P_{1}=\frac{n_{1}}{V} R T$; for gas G2 we also have $P_{2}=\frac{n_{2}}{V} R T$
The pressures P_{1} and P_{2} exerted by the gas molecules G_{1} and G_{2} respectively are called partial pressures.

A perfect gas mixture is also a perfect gas.
Consider P the total pressure of the mixture, The pressure exerted by a mixture of multiple perfect gases is determined by adding the partial pressures of each of the constituent gases in the mixture.
$\boldsymbol{P}=\sum_{i=1}^{N} \boldsymbol{P}_{i}$
P : is the total pressure of N perfect gases, and pi is the partial pressure of gas Gi
Find the relationship between partial pressure and total pressure.

2-2-2 Mixtures of perfect gases :

Consider two gases G_{1} and G_{2} respectively with two different concentrations n_{1} and ${ }_{n 2}$. P : the total pressure of the gas and n : the total mole number of the gas.

We have $\quad P_{1}=\frac{n_{1}}{V} R T \quad ; \quad P=\frac{n}{V} R T$
From these two equations we can write that
If we have a mixture of several perfect gases, we have

$$
P_{i}=\frac{n_{i}}{n_{\text {total }}} P_{T}
$$

Where ni= number of moles of gas Gi

$$
\text { ntotal }=\text { number of moles of mixture } n=\sum_{i=1}^{N} \boldsymbol{n}_{i}
$$

P: mixture pressure

Biophysics; Course and corrected exercises, 2nd year Biology degree
$\mathrm{Pi}=$ partial pressure of the gas.

The mole fraction of the gas is defined as $X_{i}=\frac{n_{i}}{n_{\text {total }}}$

2-2-3 Mean kinetic energy and quadratic velocity of a perfect gas molecule :

According to the kinetic theory of perfect gases, the pressure exerted by a gas is due to the impact of the molecules on the container wall. The absolute temperature is also proportional to the mean kinetic energy of the molecules, hence :
$\bar{E}=\frac{3}{2} k_{B} T$. with k_{B} : Boltzmann constant $=1.3810^{-23} \mathrm{~J} / \mathrm{K}$.
N : Avogadro number $=6.022 \times 10^{23} \mathrm{~mole}^{-1}$.
If we consider N molecules of a GP $\quad \overline{\mathrm{E}_{\mathrm{c}}}=\frac{1}{2} \mathrm{~m} \overline{\mathrm{~V}}^{2}$.
The mean square velocity is the following quantity :
$\mathbf{V}_{q m}=\sqrt{\overline{\mathrm{V}}^{2}}$, so we have $\overline{\mathrm{E}_{\mathrm{c}}}=\frac{1}{2} \mathrm{~m} \mathrm{~V}_{\mathrm{qm}}^{2}$.
We can write $\quad \frac{1}{2} \mathrm{~m} \mathrm{~V}_{\mathrm{qm}}^{2}=\frac{3}{2} \mathrm{k} \mathrm{T}$.

$$
\mathrm{v}_{\mathrm{qm}}=\sqrt{\frac{3 \mathrm{kT}}{\mathrm{~m}}}
$$

With $\mathrm{M}=\mathrm{N} m \Rightarrow \mathrm{~m}=\frac{\mathrm{M}}{\mathrm{N}}$ and we also have $\mathrm{R}=N \mathrm{k}_{\mathrm{B}}$

$$
\mathrm{v}_{\mathrm{qm}}=\sqrt{\frac{3 \mathrm{k}_{\mathrm{B}} \mathrm{TN}}{\mathrm{M}}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}
$$

With M: molar mass in $\mathrm{Kg} / \mathrm{mol}$.

Application:

Consider spherical particles with a diameter of $0.5 \mu \mathrm{~m}$ and a density of $1 \mathrm{~g} / \mathrm{cm}^{3}$. Calculate the root-mean-square velocity of these particles at room temperature $20^{\circ} \mathrm{C}$. Can the motion of these particles be observed under a microscope?

The data are: molecule diameters $\mathrm{d}=0.510^{-6} \mathrm{~m}, \rho=1 \mathrm{~g} / \mathrm{cm}^{3}=1000 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~T}=293 \mathrm{~K}$.

$$
\mathrm{V}_{\mathrm{qm}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}
$$

Biophysics; Course and corrected exercises, 2nd year Biology degree
$\mathbf{M}=\mathbf{m} N=\rho V N=\rho \frac{4 \pi}{3} \mathbf{r}^{3} N$
$\mathrm{V}_{\mathrm{qm}}=\sqrt{\frac{3 \mathrm{R} \mathrm{T}}{\rho \frac{4 \pi}{3} \mathrm{r}^{3} N}}=\sqrt{\frac{38.314293}{1000 \frac{4 \pi}{3}\left(0.25 \times 10^{-6}\right)^{3} 6.022 \times 10^{23}}}$

$$
\mathrm{V}_{\mathrm{qm}}=0.0136 \mathrm{~m} / \mathrm{s}
$$

his makes microscopic observation possible.

2-2-4 Total energy of a perfect gas :

The internal energy of a perfect gas $u=E_{\text {ctotale }}=N E_{c}=N \frac{3}{2} k_{B} T$
N : is the number of GP molecules
If there are n moles of GP, then N : Avogadro number

$$
\mathrm{N}=N \mathrm{n}, \mathrm{R}=N \mathrm{k}_{\mathrm{B}}
$$

$$
u=\mathrm{N} \frac{3}{2} k_{B} T=N n \frac{3}{2} k_{B} T=\frac{3}{2} n R T=\frac{3}{2} P V
$$

2-2-5 Change of state :

If a solid is heated (EL>>>ETrans), ETrans increases progressively and becomes of the same order of magnitude as EL, with transition to the liquid state, then, if further heating is applied, transition to the gaseous state.

ETrans>>>EL.

Figure1.1 The different states of matter and how they change.

3-Liquids :

Biophysics; Course and corrected exercises, 2nd year Biology degree

The liquid state is an intermediate state between the gaseous and solid states. It has properties in common with each of them

1- It's a fluid, like gases
2- It is a condensed state like solids.
Since intermolecular distances are very small, this has important consequences for liquids:
a- Liquids have a well-defined volume, since molecules attract each other sufficiently to remain close to each other.
b- Consequently, cohesion is not very important, since the liquid takes the shape of the container it occupies.
c- The liquid is characterized by a large volume.
d- Molecules are almost contiguous, so liquids have low compressibility.

3-1 Structure and properties of water :

The water molecule $\mathrm{H}_{2} \mathrm{O}$ is made up of two OH bonds $0.96 \mathrm{~A}^{\circ}$ long, making an angle of 104.28° between them. This asymmetrical structure, with an excess of negative charge on the oxygen and positive charge on the hydrogen, gives the water molecule a high dipole moment of 1.84 debye (1 debey $=1 \mathrm{D}=3.33610^{-30} \mathrm{C} \mathrm{m}$).

The positive charges carried by the hydrogens in water cause electrostatic bonds of a particular type with the electronegative atoms of neighboring molecules. These are called hydrogen bonds, and they are at the origin of the physicochemical properties of water, starting with the associations of water molecules with each other.

- In its liquid state, water has a peseudocrystalline structure, with each water molecule linked to four neighboring molecules.
- In its solid state, ice has an even more organized hexagonal structure.

Temperature is defined on a scale of degrees Celcius between $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$.
$0^{\circ} \mathrm{C}$: Freezing point of water.
$100^{\circ} \mathrm{C}$: Boiling point of water at normal atmospheric pressure.

3-2 Dissolution :

When a solid forms a homogeneous mixture with water, we say that :

- The solid dissolves in water.

Biophysics; Course and corrected exercises, 2nd year Biology degree

- The solid is soluble in water.

Examples: salt and sugar are soluble in water.
The mixture obtained during dissolution is called an aqueous solution.
The water used to dissolve the solid acts as a solvent.

The dissolved solid acts as the solute.

4-Solid :

The solid state corresponds to a crystalline structure whose elements (atoms, ions or molecules) are ordered periodically in space.
Example: a centered cubic crystal.
Depending on the physical nature of the elements placed at the nodes of the crystal, we distinguish 3 types of crystals

1- Ionic crystals, e.g. sodium chloride NaCl , and more generally electrolytes, as the crystal is made up of Na^{+}and Cl^{-}ions.
2- Atomic crystals, e.g. diamond C
3- Molecular crystals, such as benzene.

In a crystalline state, atoms, ions or molecules remain in a specific place. The only disorder factor is the vibration or oscillation of atoms around their equilibrium position (thermal agitation). In molecular crystals, the molecules rotate in place.
If the solid is heated, thermal agitation increases, and when the vibration energy is sufficient, the cohesive forces that ensure the regularity of the crystalline structure are negligible. The solid state then changes to the liquid state, and we have the phenomenon of melting, which occurs at a specific melting temperature. It should be noted that molecular crystals have a lower melting temperature than atomic crystals, as their cohesive forces are even weaker.

Intermediate states :

5-1- Glasses :

A non-crystalline solid exhibiting the glass transition phenomenon. Rapid cooling of a liquid below Tmelt produces a supercooled liquid (metastable state) and then a glass (non-

Biophysics; Course and corrected exercises, 2nd year Biology degree
equilibrium state) below Tg , the glass transition temperature.

Figure 1.2 Different transition temperatures [1].

5-2 Cristaux liquides :

It's a complex fluid that combines the properties of a liquid phase and a crystallized solid phase. Its state is known as a mesophase or mesomorphic state (from the Greek for "of intermediate form"). The nature of the mesophase differs according to the nature and structure of the mesogen, the molecule at the origin of the mesophase, as well as temperature, pressure and concentration conditions. Liquid crystals are used in a number of applications, such as liquid crystal displays (LCDs), which use the properties of nematics, i.e. the molecules are distributed without positional order (as in a liquid), but remain on average parallel to one another. The property of changing color with respect to the angle of observation has also been used in banknotes, on certain logos, or certain decorative paints [2].

5-3 Granular states :

Depending on the energy supplied to them, granular materials can behave like solids, fluids or gases. This type of material is found in many fields, both natural (sand and dunes, rocks in a mudslide, avalanches, etc.) and industrial (preparation of medicines, manufacture of concrete, paints, granules, aggregates, etc.) or even agri-food (corn kernels, wheat kernels, etc.)[3].

5-4 Polymer :

A polymer is a macromolecule formed by the covalent linking of a very large number of repeating units derived from one or more monomers (which are also called units) and prepared from molecules called monomers.
The best-known polymers are :

- natural fibers :
- sugar polymers: slow sugars: starch, glycogen, and other fibers...
- nucleic acids: DNA and RNA are polymers of nucleosides linked by phosphate bridges;
- protein fibers: leather (collagen), silk and wool (keratin), etc. ;
- proteins, which are polymers of amino acids;
- plastics ;

Biophysics; Course and corrected exercises, 2nd year Biology degree

- natural (latex) and artificial rubbers;
- glues ;
- paints;
- resins.

They are widely used as matrixes for composite materials.
They have the following general properties [4]:

- They are "light" materials, with a low density (generally less than $1,500 \mathrm{~kg}-\mathrm{m}^{-3}$, i.e. a density in relation to water of less than 1.5);
- They are generally flexible: thermoplastic polymers have a Young's modulus of less than about 3 GPa ;
- They are stable only at moderate temperatures.

References :

[1] http://www-ext.impmc.upmc.fr/~ferlat/Enseignement/LP350/verres-LP350_2017.pdf
[2] https://fr.wikipedia.org/wiki/Cristal liquide
[3] https://fr.wikipedia.org/wiki/ Matériau_ granulaire
[4] https://fr.wikipedia.org/wiki/polymère

Biophysics; Course and corrected exercises, 2nd year Biology degree
 Exercices :

Exercice 1 :

1- What is the volume of 4 moles of perfect gas if $\mathrm{P}=3 \mathrm{~atm}$ and $\mathrm{T}=300 \mathrm{~K}$?
2- A gas occupies a volume of 6 m 3 at a pressure of 1 atm . What happens to the pressure if the volume becomes equal to $4.5 \mathrm{~m}^{3}$, while the temperature remains constant?

3- If the temperature of a gas increases from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ at constant pressure, by how much will the volume change?

We give: Boltzmann's constant $\mathrm{kB}=1.38 .10^{-23} \mathrm{~J} / \mathrm{K}$;

$$
\text { the perfect gas constant } \mathrm{R}=0.082 \mathrm{1} . \mathrm{atm} . \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}=8.31 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}
$$

Exercise 2:

If we consider dry air as a homogeneous mixture of perfect gases, with molar mass
$\mathrm{M}=29 \mathrm{~g} . \mathrm{mol}^{-1}$, made up of 78% nitrogen $\left(\mathrm{N}_{2}\right)$ and 21% oxygen $\left(\mathrm{O}_{2}\right)$, plus other gases present in small quantities. Air pressure at sea level is 1 atm . Calculate at $0^{\circ} \mathrm{C}$:

1- The partial pressures of oxygen and nitrogen at sea level
2- The partial pressures of these two gases at an altitude of $\mathrm{h}=6000 \mathrm{~m}$ (the proportions of the gases are considered unchanged, and the molar mass of the mixture and the temperature are assumed constant).

We give $\mathrm{g}=9.8 \mathrm{~m} . \mathrm{s}^{-2}$

Exercise 3:

At $\mathrm{T}=300 \mathrm{~K}$, two gases assumed to be perfect have root-mean-square velocities of $1367.7 \mathrm{~m} / \mathrm{s}$ and $412.38 \mathrm{~m} / \mathrm{s}$ respectively.

1- What are these two gases?
2- Calculate the mean translational kinetic energy in eV of the molecules of these gases at temperature

Personal work

Exercice1 :

The pressure p in a fluid varies according to the following law: $\mathrm{dp}=-\rho \mathrm{g} \mathrm{dz}$, where ρ is the density, g is the acceleration of gravity and z is the altitude.
1 - If the fluid is a liquid, of constant density ρ.
a- Find the expression for the variation in pressure as a function of altitude (hydrostatic law). hydrostatics).

Biophysics; Course and corrected exercises, 2nd year Biology degree

b- Application: calculate the pressure at depth $\mathrm{h}=5 \mathrm{~m}$ of seawater if the pressure at its surface is 1 atm . We give the density of seawater $\rho \approx 1.025 \mathrm{~g} / \mathrm{ml}$.

2- In the case where the fluid is a perfect gas, the density ρ is not constant.
a- Using the perfect gas law, find the expression for ρ as a function of pressure p, temperature T , perfect gas constant R and molar mass M .
b- Find the expression for the variation in pressure as a function of altitude z .
c- Application: calculate the pressure at altitude $\mathrm{z}=8600 \mathrm{~m}$. The molar mass of dry air $\mathrm{M}=$ $29 \mathrm{~g} / \mathrm{mol}$ is given.

Exercise2 :

Three containers respectively contain hydrogen, oxygen and nitrogen at temperature $\mathrm{T} 1=293^{\circ} \mathrm{K}$ under the following conditions: $\mathrm{H}_{2}: \mathrm{V}_{1}=2.25$ litres, $\mathrm{P}_{1}=250 \mathrm{~mm} \mathrm{Hg}, \mathrm{O}_{2}: \mathrm{V}_{2}=5.50$ litres, $\mathrm{P}_{2}=250 \mathrm{~mm} \mathrm{Hg}, \mathrm{N}_{2}: \mathrm{V}_{3}=1,4$ litres, $\mathrm{P}_{3}=760 \mathrm{~mm} \mathrm{Hg}$
1- Calculate the mass $\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}$ of each gas, assuming they are perfect.
($1 \mathrm{~atm}=760 \mathrm{mmHg}=1.013105$ pascals)
2- Mix the three gases at the same temperature in a single container of volume $\mathrm{V}_{0}=18.5$ liters. The mixture thus formed is assumed to be ideal. Calculate the total pressure, the mole fraction of each gas and the various partial pressures. $\mathrm{M}_{\mathrm{H}}=1 \mathrm{~g} / \mathrm{mol}, \mathrm{MO}=16 \mathrm{~g} / \mathrm{mol}, \mathrm{M}_{\mathrm{N}}=14 \mathrm{~g} / \mathrm{mol}$ are given.

Exercise 3:

A tube of length $L=1 \mathrm{~m}$ and cross-section $\mathrm{S}=80 \mathrm{~mm}^{2}$ contains $\mathrm{N}_{\text {eon }}\left(\mathrm{M}_{\mathrm{Ne}}=20.2 \mathrm{~g} / \mathrm{mol}\right)$ under a pressure of 1 KPa , at temperature $\mathrm{T}=300 \mathrm{~K}$.
1- Calculate the mass of Neon contained in the tube.
2- Calculate the internal energy and squared velocity of the gas molecules.
3- Add 0.4 mg of helium ($\mathrm{MHe}=4 \mathrm{~g} / \mathrm{mol}$) to the tube;
a- What are the partial pressure of this gas and the mean square velocity of its molecules?
b- Calculate the total pressure and the total internal energy.

Answers :

Exercice 1 :

$$
\begin{aligned}
& 1-\quad n_{\text {gp }}=4 \text { moles } \quad ; \quad R=0.082 \text { l.am. } \mathrm{mol}^{-1} \cdot K^{-1} \\
& p=3 \mathrm{~atm} \\
& T=300 \mathrm{~K} \\
& G P \rightarrow P V=n R T=>V=\frac{n R T}{P}=\frac{40,082300}{2}=49,2 l \\
& \text { 2- } \quad V=6 m^{3} \quad ; \quad V^{\prime}=4,5 m^{3}, T=c s t e \\
& P=1 \mathrm{~atm}=10^{5} \mathrm{pas} \quad P^{\prime}=\text { ? ; } \\
& P V=n R T \rightarrow n=\frac{P V}{R T}
\end{aligned}
$$

Biophysics; Course and corrected exercises, 2nd year Biology degree

$$
\begin{aligned}
& p^{\prime} V^{\prime}=n^{\prime} R T \rightarrow n^{\prime}=\frac{p^{\prime} V^{\prime}}{R T} \quad n^{\prime}=n \quad \text { so } P V=P^{\prime} V^{\prime}=>P^{\prime}=\frac{P V}{V^{\prime}} \\
& p^{\prime}=\frac{10^{5} 6}{4,5}=1,3310^{5}=1,33 \quad 10^{5} \mathrm{la}=1,33 \mathrm{~atm}
\end{aligned}
$$

3- $\quad T=0^{\circ} \mathrm{C}+273 ; \quad P=$ cste

$$
T^{\prime}=100^{\circ} \mathrm{C}+273
$$

$$
P V=n R T \quad \Leftrightarrow \frac{n R T}{V}=\frac{n R T^{\prime}}{V^{\prime}} \Leftrightarrow V^{\prime}=V \quad \frac{T^{\prime}}{T}
$$

$$
P V^{\prime}=n R T^{\prime}
$$

$$
V^{\prime}=V \quad \frac{373}{273}=\left(1+\frac{100}{273}\right) V=\left(1+\frac{100}{273}\right) V=1,36 V
$$

$$
\Delta V=V^{\prime}-V=1,36 V-V=0.36 V
$$

Exercice 2:

$M=29 \frac{\mathrm{~g}}{\mathrm{~mol}}$
78% de $N 2 \rightarrow f_{N_{2}}=\frac{n_{N_{2}}}{n T}=0,78$
21% de $O_{2} \rightarrow f o_{2}=\frac{n o_{2}}{n T}=0,21$
Pair $=1 \mathrm{~atm}$
$1-\quad P_{n_{2}}=f_{n_{2}} \cdot P_{\text {air }}=0,781=0,78 \mathrm{~atm}$

$$
P_{o_{2}}=f_{o_{2}} \cdot P_{\text {air }}=0,211=0,21 \mathrm{~atm}
$$

2- $\quad h=6000 m$
$P_{n_{2}}=f_{N_{2}} \cdot p_{h}$
$p_{o_{2}}=f_{o_{2}} \cdot p_{h}$
$p_{h \text { calculation }}$? when $d z \uparrow=>p \downarrow$
$d p=-\rho g d z \quad(-)$ indicates the dimunition of p When $d z \uparrow$
$\rho=\frac{m}{V}$ air density $(m=n M)$
$d p=-\frac{m}{V} g d z=-n \frac{M}{V} g d z$
air considered as ρ az perfect $=>P V=n R T=>\frac{n}{V}=\frac{p}{R T}$
$d p=-\frac{p M}{R T} g d z=>\int_{P_{o}}^{P_{h}} \frac{d p}{p}=-\frac{M g}{R T} \int_{o}^{h} d z$
$\operatorname{Ln} \frac{p_{h}}{p_{o}}=-\frac{M g}{R T} h=>p_{h}=p_{o} \quad e^{-\frac{M g}{R T} h} \quad, \quad M=2910^{-3} \mathrm{~kg} \mathrm{~mol}^{-1}$
$p_{h}=1 e^{-2910^{-3} 9,81 \frac{6000}{8,314273}}=>p_{h}=0.47 \mathrm{~atm}$
$P_{n_{2}}=f_{N_{2}} \cdot p_{h}=0.780 .47=0.366 \mathrm{~atm}$
$P_{o_{2}}=f_{o_{2}} \cdot p_{h}=0.210 .47=0.0987 \mathrm{~atm}$

Biophysics; Course and corrected exercises, 2nd year Biology degree

Exercice 3 :

$\mathrm{T}=300 \mathrm{~K}$
$\mathrm{V}_{\mathrm{q} 1}=1367,7 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{\mathrm{q} 2}=412.38 \mathrm{~m} / \mathrm{s}$
1- We know that $\quad \mathbf{M}=\frac{3 R T}{\mathbf{V}_{\mathbf{q} 1}^{2}}$
$\mathrm{M}_{1}=\frac{3 \mathrm{RT}}{\mathrm{V}_{\mathrm{q} 1}^{2}}=\frac{38,31300}{(1367,7)^{2}}=3.99810^{-3} \mathrm{~kg} / \mathrm{mol} \approx 4 \mathrm{~g} / \mathrm{mol}$, It's the He
$\mathrm{M}_{2}=\frac{3 \mathrm{RT}}{\mathrm{V}_{\mathrm{q} 2}^{2}}=\frac{38,31300}{(412.38)^{2}}=43.9710^{-3} \mathrm{~kg} / \mathrm{mol} \approx 44 \mathrm{~g} / \mathrm{mol}$, It's the CO_{2}
$\langle E\rangle=\frac{3}{2} k T=\frac{3}{2} 1.3810^{-23} 300=6.10^{-21}$ Joules
$1 \mathrm{eV}=1.6 \quad 10^{-19}$ Joules, $\quad\langle\boldsymbol{E}\rangle=38.8 \mathrm{meV}$

Biophysics; Course and corrected exercises, 2nd year Biology degree

Chapter 2: General information on aqueous solutions

1- Study of solutions :

A solution is defined as any homogeneous mixture in a condensed phase (liquid or solid), i.e. a single phase comprising :
the solvent and the solute (or dissolved body). If one of the constituents is liquid, it is the solvent.
For example: in an aqueous solution of copper (solid) and ammonia (gas), the solvent is water; if two or more components are liquid, the most abundant liquid is the solvent. A distinction is made between neutral solutions, in which all solutes are molecules (molecules, neutral dissolved body particles), and electrolytic solutions, which are solutions of salts, bases $\left(\mathrm{OH}^{-}\right)$and acids $\left(\mathrm{H}^{+}, \mathrm{H}_{3} \mathrm{O}^{+}\right)$.
Electrolytic solutions conduct electric current
$\mathrm{NaCl} \longrightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-} \quad$ strong electrolytic solution
$\mathrm{CH} 3 \mathrm{COOH} \longrightarrow \mathrm{CH} 3 \mathrm{COO}^{-}+\mathrm{H}^{+} \quad$ weak electrolyte solution

1-1 Dissociation coefficient :
This is the ratio of the number of moles of solute molecules that have dissociated to the initial number of moles of molecules. It is a dimensionless number
$\alpha=1$ for a strong electrolyte solution
$\alpha<1$ for a weak electrolytic solution

2- Concentrations :

The solution is characterized by the following parameters:
a- Molar fraction :
Is equal to the ratio of the number of moles of solute to the total number of moles in the solute+solvent mixture.
$\mathrm{f}_{1}=\frac{n 1}{n 1+n 2} \quad, \quad \mathrm{f}_{2}=\frac{n 2}{n 1+n 2}$
n 1 : number of molecules of one component
n 2 : number of molecules of the other component.
We see that $\mathrm{f}_{1}+\mathrm{f}_{2}=1$
If there are several components, the mole fraction of the i-th component is

$$
: \mathrm{f}_{\mathrm{i}}=\frac{n i}{n 1+n 2+\cdots+n i+\cdots+n p}
$$

Exemple1 :

Glucose solution obtained by dissolving 2 g of glucose in 1 liter of water. The molar mass of glucose ($\mathrm{Mg}=180 \mathrm{~g} / \mathrm{mol}$) and the molar mass of water ($\mathrm{M}_{\text {water }}=18 \mathrm{~g} / \mathrm{mol}$) are given.

Biophysics; Course and corrected exercises, 2nd year Biology degree

$\mathrm{fg}=\frac{n g}{n t} \quad=\frac{n g}{n g+n e} ; \mathrm{ng}=\frac{m}{M}=\frac{2}{180}=0.01$ mole
ne $=\frac{m e}{M} ; \mathrm{V}=1$ litre so $\mathrm{me}=1 \mathrm{~kg}=1000 \mathrm{~g}$ therefore
ne $=\frac{1000}{18}=55.56$ mole
(Knowing that for an aqueous solution 1 liter weighs about 1 kg)
$\mathrm{fg}=\frac{n g}{n g+n e}=\frac{0.01}{55.56+0.01}=\frac{0.01}{55.57}=1.7910^{-4}$
$\mathrm{fe}=\frac{n e}{n g+n e}=\frac{55.56}{55.57}=0.9998$

a- Weight concentration :

This is the ratio of the mass of solute ms to the volume of solution Vsol
$\mathrm{C}^{\mathrm{p}}=\frac{m \text { soluté }}{V \text { solvant }}\left[\mathrm{g} / \mathrm{l}, \mathrm{g} / \mathrm{cm}^{3}\right]$

Note: the following approximation is often used $V_{\text {solution }}=V_{\text {solvent }}$
This expression is widely used, but is awkward because Vsolution is highly temperaturedependent. For this reason, the weight concentration is defined as the ratio of the mass of solute ms to the mass of solution or the mass of solvent :

$$
\mathrm{C}^{\mathrm{p}}=\frac{m s}{m s+m o} ; \mathrm{C}^{\mathrm{p}}=\frac{m s}{m o} \frac{(\text { masse solute })}{(\text { mase du solvant })} \quad(\mathrm{g} / \mathrm{kg})
$$

If the solvent is water at room temperature, then the 2 expressions are equivalent, since 1 liter weighs approximately 1kilogram.

Example2: $500 \mathrm{~cm}^{3}$ of glucose solution at $7 \mathrm{~g} / \mathrm{l}$ is mixed with 2 liters of water. What is the weight concentration of the solution?

In $500 \mathrm{~cm}^{3}=0.5$ litre nous avons $\mathrm{C}^{\mathrm{p}}=7=\frac{m \text { soluté }}{0.5}$
$\mathrm{m}_{\text {solute }}($ gluscose $)=70.5=3.5 \mathrm{~g}$
$\mathrm{V}_{\text {final solution }}=\mathrm{V}_{\text {glucose }}+\mathrm{V}_{\text {water }}=0.5+2=2.5$ litre
$\mathrm{C}^{\mathrm{p}}{ }_{\text {solution }}=\frac{m \text { glucose }}{V \text { solution finale }}=\frac{3.5}{2.5}=1.4 \mathrm{~g} / 1$

a- Molarity and the molar concentation :

C^{M} of a solute (molarity) is the ratio of the number of moles of a solute to the volume of the solution.

$$
\mathrm{C}^{\mathrm{M}}{ }_{\text {solute }}=\frac{n \text { solute }}{V \text { solution }}\left(\operatorname{mole} / l \text { or } \mathrm{SI} \text { mole } / \mathrm{m}^{3}\right)
$$

Biophysics; Course and corrected exercises, 2nd year Biology degree

$\mathrm{V}_{\text {solution }}$ depends on temperature, so we define a molar concentration by weight

b- Molality :

the ratio of the number of moles of a solute to the mass of the solvent
$\mathrm{C}^{\mathrm{m}}=\frac{m \text { solute }}{m \text { solvent }}(\mathrm{mole} / \mathrm{kg})$

Exemple3:

dissolve $4.5 \mathrm{~g} \mathrm{NaCl}(58.5 \mathrm{~g} / \mathrm{mol})$ in $500 \mathrm{~cm}^{3}$ distilled water. calculate C^{M} et C^{m}
$\mathrm{C}^{\mathrm{M}}=\frac{n}{V \text { sol }}=\frac{\frac{m}{M}}{V \text { sol }}=\frac{\frac{4.5}{\overline{58.5}}}{0.5}=0,154 \mathrm{~mole} / \mathrm{l}$
$\mathrm{C}^{\mathrm{m}}=0.154 \mathrm{~mole} / \mathrm{kg}$

b- b- Ionic concentration or ionarity [ions] or $\mathbf{C}^{\mathrm{I}} \mathrm{i}$;

[ions] $=\alpha \mathrm{U}_{\text {ions }} \mathrm{C}^{\mathrm{M}}$ [ion gramme/l or mole d'ion/l]
α : dissociation coefficient
$U_{i o n s}$: is the number of ions provided by each molecule as it dissociates

Exemple4 :

$\mathrm{NaCl} \longrightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$

$$
\mathrm{CaCl}_{2} \longrightarrow \mathrm{Ca}^{++}+2 \mathrm{Cl}^{-}
$$

$$
\begin{array}{ll}
v_{\mathrm{Na}+}=1 & v_{\mathrm{Cl}}=1 \\
v_{\mathrm{Ca++}}=1 & v_{\mathrm{cl}-}=2
\end{array}
$$

c- equivalent concentration : $\mathbf{C}^{\text {eq }}$

Pour un ion i de concentration ionique [i] et de valence z_{i} on a:
$C_{i}^{e q}=\left|z_{i}\right| \quad[\mathrm{i}]=\left|z_{i}\right| \alpha v_{i}$ unit (gram equivalent/l or mole equivalent/l)
$U_{i o n s: ~ n u m b e r ~ o f ~ i o n s ~ s u p p l i e d ~ b y ~ t h e ~ m o l e c u l e ~ w h e n ~ d i s s o c i a t i n g ~}^{\text {n }}$
Electrovalence of the solute molecule

Example5:

Given that the molar concentration of $\mathrm{CaCl}_{2}=2 \mathrm{~mole} / \mathrm{l}$ with a dissociation coefficient $\alpha=1$.
Calculate the equivalent concentration of positive and negative ions. What conclusions can be drawn?
$\mathrm{CaCl}_{2} \longrightarrow \mathrm{Ca}^{++}+2 \mathrm{Cl}^{-} \quad$ avec $\mathrm{vCa}_{\mathrm{a}++}=1 \quad \mathrm{U}_{\mathrm{cl}}=2$

Biophysics; Course and corrected exercises, 2nd year Biology degree
$C_{c a++}^{e q}=\left|Z_{c a++}\right|\left[\mathrm{Ca}^{++}\right]=\left|Z_{c a++}\right| \alpha v_{\mathrm{Ca++}} \mathrm{C}^{\mathrm{M}}=2 \times 1 \times 1 \times 2=4 \mathrm{Eqg} / \mathrm{l}$
$C_{c l-}^{e q}=\left|Z_{c l-}\right| \quad\left[\mathrm{cl}^{-1}\right]=\left|Z_{c l-}\right| \alpha \mathrm{Ucl-} \mathrm{C}^{\mathrm{M}}=1 \times 1 \times 2 \times 2=4 \mathrm{Eqg} / 1$
We note that the equivalent concentration of positive ions is always equal to the equivalent concentration of negative ions, so we have

$$
C_{+}^{e q}=C_{-}^{e q}
$$

The total equivalent concentration of the solution $C_{\text {totale }}^{\text {eq }}$ will be the sum of the equivalent concentrations of positive and negative ions.

g- Osmolar concentration or osmolarity $\mathbf{C}^{\mathbf{0}}$:

The ratio of the number of all undissociated molecules and ions in a solution to the volume of the solution.
$\mathrm{C}^{0}=\frac{\text { nosm }}{\mathrm{v}}=\frac{\mathrm{n}_{\text {ion }}}{\mathrm{v}}+\frac{\mathrm{n}_{\text {nondiss }}}{\mathrm{v}}$ osmole/l
Consider a weak electrolyte solution of dissociation coefficient α of molar concentration C^{M} in a volume of solvent V . We'll look up the relationship between osmolar concentration and molar concentration.

Each molecule of this solute dissociates into v positive ions noted by v_{+}positive ions and v negative ions noted by v. negative ions. Knowing that $C^{M}=\frac{n_{\text {initial }}}{V}$
$C^{0}=\frac{\text { nosmol }}{V}$
$\mathrm{C}^{0}=\frac{\text { nions }+\mathrm{n}_{\text {nondiss }}}{\mathrm{V}}$
$\mathbf{n}_{\text {ions }}=\mathbf{n}_{\text {cations }}^{\text {ions }}+\mathbf{n}_{\text {anions }}^{\text {ions- }}=\mathbf{v}_{+} \alpha \mathbf{n}_{\text {init }}+\mathbf{v}_{-} \alpha \mathbf{n}_{\text {init }}$

$$
=\left(v_{+}+v_{-}\right) \mathbf{n}_{\mathrm{diss}}=v_{\mathbf{n}_{\mathrm{diss}}}=\alpha v_{\mathbf{n}_{\mathrm{init}}}
$$

$\mathrm{n}_{\text {nondiss }}=\mathrm{n}_{\text {initial }}-\mathrm{n}_{\text {diss }}=\mathrm{n}_{\text {initial }}-\alpha \mathrm{n}_{\text {initial }}=(1-\alpha) \mathrm{n}_{\text {initial }}$
$C^{0}=\frac{n_{\text {ions }}+n_{\text {nondiss }}}{V}=\frac{v \alpha n_{n_{\text {init }}+(1-\alpha) n_{\text {initial }}}}{V}$

Biophysics; Course and corrected exercises, 2nd year Biology degree

$$
=\frac{n_{i n i t}(\alpha v+1-\alpha)}{V}=(1+\alpha(v-1)) C^{M}
$$

$C^{0}=(1+\alpha(v-1)) C^{M}$
Avec $\mathrm{i}=1+\alpha(v-1), \mathrm{i}$ is called the van't Hoff ionization coefficient
$C^{0}=i C^{M}$

h - Ionic strength of a solution :

It is a numerical value that characterizes the state of the solution, and is unitless. It is generally denoted by μ and given by the formula

$$
\mu=\frac{1}{2}\left[\sum_{i} z_{\mathrm{i}}^{2}[\mathrm{i}]\right]
$$

with μ : ionic strength, [i]: ionarity of ion i gram/l or mole/l and zi: valency of ion i.

Exemple6 :

1 mole of CaCl_{2} is taken with 2 moles of NaCl in a volume of 1 liter. Calculate the ionic strength of the solution.

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{Ca}++}=+2 \quad \text { et } \quad \mathrm{z} \mathrm{Cl}_{-}=-1 \\
& {\left[\mathrm{Ca}^{++}\right]=v_{\text {Cat+ }} \alpha \mathrm{C}^{\mathrm{M}}=1 \mathrm{x} 1 \mathrm{x} 1=1 \text { ion } \mathrm{g} / \mathrm{l}} \\
& {\left[\mathrm{Na}^{+}\right]=v_{\mathrm{Na}+} \alpha \mathrm{C}^{\mathrm{M}}=1 \times 1 \times 2=2 \text { ion } \mathrm{g} / \mathrm{l}} \\
& {\left[\mathrm{Cl}^{-}\right]_{\mathrm{NaCl}}=\mathrm{vCl}^{-} \alpha \mathrm{C}^{\mathrm{M}}=1 \times 1 \times 2=2 \text { ion } \mathrm{g} / \mathrm{l}} \\
& {\left[\mathrm{Cl}^{-}\right]_{\mathrm{CaCl}}=\mathrm{vCl}^{-} \alpha \mathrm{C}^{\mathrm{M}}=2 \mathrm{x} 1 \mathrm{x} 1=2 \text { ion } \mathrm{g} / \mathrm{l}} \\
& \mu=\frac{1}{2}\left[Z_{N a+}^{2}\left[\mathrm{Na}^{+}\right]+Z_{c \mathrm{cl}-}^{2}\left[\mathrm{Cl}^{-}\right]+Z_{\mathrm{Ca}^{2+}}^{2}\left[\mathrm{Ca}^{++}\right]+Z_{\mathrm{cl}-}^{2}\left[\mathrm{Cl}^{-}\right]\right] \\
& =\frac{1}{2}\left[(1)^{2} 2+(1)^{2} \cdot 2+(2)^{2} \cdot 1+(-1)^{2}(2)\right] \\
& =\frac{1}{2}[2+2+4+2]=5
\end{aligned}
$$

3- Solubility :

Solubility is the maximum amount of substance that can dissolve in a given volume of water. The solubility of a pure substance depends, for a given temperature, on the structure of the compound and the nature of the solvent.

To define the solubility product for a saturated solution (which is, by definition, a solution in dynamic equilibrium with undissolved solute), we define an equilibrium constant which is related to the solubility constant.

Biophysics; Course and corrected exercises, 2nd year Biology degree

3-1 Equilibrium constant and solubility constant:

A weak solution is obtained by dissociation of a solute of the following form:
$\mathrm{A}_{\mathrm{a}} \mathrm{B}_{\mathrm{b}} \underset{\mathrm{a}}{ } \mathrm{A}^{\mathrm{b}+}+\mathrm{bBB}^{\mathrm{a}-}$
The equilibrium constant of this solution is given by Ostwald's law, which can be written as

$$
: K=\frac{\left[\mathbf{A}^{\mathrm{b}+}\right]^{\mathrm{a}}\left[\mathbf{B}^{\mathrm{a}-}\right]^{\mathrm{b}}}{\left(\mathbf{A}_{\mathrm{a}} \mathbf{B}_{\mathrm{b}}\right)_{\text {nondiss }}}
$$

The solubility constant Ks is defined by this equation:

$$
\mathbf{K}_{\mathrm{s}}=\left[\mathbf{A}^{\mathrm{b}+}\right]^{\mathrm{a}}\left[\mathbf{B}^{\mathrm{a}-}\right]^{\mathrm{b}} \longleftrightarrow \mathbf{K}_{\mathrm{s}}=\mathbf{K}\left(\mathbf{A}_{\mathrm{a}} \mathbf{B}_{\mathrm{b}}\right)_{\text {nondiss }}
$$

Let C^{M} be the molar concentration of the electrolyte $\boldsymbol{A}_{a} B_{b}$:

$$
\begin{aligned}
& {[A]^{b+}=\mathrm{a} \alpha \mathrm{C}^{\mathrm{M}} \quad ; \quad[B]^{a-}=\mathrm{b} \alpha \mathrm{C}^{\mathrm{M}}} \\
& \begin{aligned}
\left(\boldsymbol{A}_{a} \boldsymbol{B}_{b}\right)_{\mathrm{non} \text { diss }} & =\frac{\mathrm{n}_{(\text {Aa,Bb)non diss }}}{V}=\frac{\text { niniti-ndiss }}{V} \\
& =\frac{\text { nint- } \alpha \text { nint }}{V}=\frac{(1-\alpha) \text { nint }}{V}=(1-\alpha) \mathrm{C}^{\mathrm{M}} \\
\mathrm{~K} & =\frac{\left(a \alpha C^{M}\right)^{a} \cdot\left(b \alpha C^{M}\right)^{b}}{(1-\alpha) C^{M}}
\end{aligned}
\end{aligned}
$$

Exemple1 :

1) $\mathrm{AB} \underset{\longrightarrow}{\rightleftarrows} \mathrm{A}^{+}+\mathrm{B}^{-} \quad \mathrm{K}=\frac{\alpha C^{M} \alpha C^{M}}{(1-\alpha) C^{M}}=\frac{\alpha^{2} C^{M}}{1-\alpha}, \quad \mathrm{K}_{\mathrm{s}}=\alpha C^{M} \alpha C^{M}=\alpha^{2} C^{M}$
2) $\mathrm{AB}_{2} \underset{\longrightarrow}{\longleftrightarrow} \mathrm{~A}^{+2}+2 \mathrm{~B}^{-} \quad \mathrm{K}=\frac{\left(\alpha C^{M}\right)^{1}\left(2 \alpha C^{M}\right)^{2}}{(1-\alpha) C^{M}}=\frac{4 \alpha^{3} C^{M^{3}}}{(1-\alpha) C^{M}}=\frac{4 \alpha^{3} C^{M^{2}}}{(1-\alpha)}, \quad \mathrm{K}_{\mathrm{s}}=4 \alpha^{3} C^{M^{3}}$

Biophysics; Course and corrected exercises, 2nd year Biology degree

4- Electrical properties of electrolytes :

4-1 Electrical conductivity:

Aqueous ionic solutions conduct electric current (conductors) because the coulombic force of attraction decreases, so the distance between the ions increases, the bond becomes weak and we have complete or partial dissolution of the crystal. On the other hand, liquids such as pure water, oil and glucose or urea solutions allow little or no electrical current to pass through them, as they are neutral solutions. The electrical resistance R of an electrolytic solution of resistivity ρ placed in a tank of length 1 and cross-section S has the expression :

$$
\mathbf{R}=\frac{\rho \mathbf{1}}{\mathbf{S}}
$$

R is in Ohms, ρ in Ohms $m, 1$: the length of the tank in m and S in m^{2}.
Electrical conductivity χ is expressed in $\mathrm{Ohms}^{-1} \mathrm{~m}^{-1}$, and is the inverse of resistivity; hence the expression for conductivity

$$
\chi=\frac{\mathbf{1}}{\mathbf{\rho}}
$$

Physical meaning of electrical conductivity χ :

An electrolytic solution is placed in a cylindrical cylindrical tank, across which a voltage a voltage V (or ddp) is applied.

An electric current flows through
the tank, given by $\mathbf{i}=\frac{\mathbf{V}}{\mathbf{R}}$

where R is the electrical resistance of the electrolyte soluation.
$\mathbf{i}=\frac{\mathbf{V}}{\mathbf{R}}=\frac{\mathbf{V S}}{\mathrm{P} \mathbf{1}}=\frac{\mathbf{V} \chi \mathbf{S}}{\mathbf{1}}$
$\chi=\frac{\mathrm{i} 1}{\mathrm{SV}} \square \chi=\frac{\frac{\mathrm{i}}{\mathrm{S}}}{\frac{\mathrm{V}}{1}}$
\boldsymbol{i} Current density: current intensity per unit area
S
$\frac{V}{\boldsymbol{l}} \quad$ Electric field: applied voltage per unit length
Definition: the conductivity of an electrolytic solution is equal to the current density that flows through it when it is subjected to a unit electric field. $\left(\mathrm{E}=1 \mathrm{~V} \mathrm{~m}^{-1}\right)$.

4.2 Ion mobility:

By definition, the ionic mobility μ of an ion is its velocity in a unit electric field. ($\mathrm{E}=1 \mathrm{~V}$ m^{-1})

$$
\overrightarrow{\mathrm{V}}=\mu \overrightarrow{\mathrm{E}}
$$

An ion of charge q placed in a field E is subjected to a force $\overrightarrow{\mathbf{F}}=\boldsymbol{q} \overrightarrow{\mathbf{E}}$.
Under the influence of force, the ion moves through the solvent, but is slowed down by the viscosity of the medium, expressed by the force f defined by Stokes' law:

$$
\overrightarrow{\mathbf{f}}=6 \pi \eta \mathbf{r} \overrightarrow{\mathbf{v}}
$$

When the two forces F and f are equal, the ion moves at constant speed, hence

$$
\begin{aligned}
& \sum \overrightarrow{\mathrm{F}}=\overrightarrow{\mathrm{O}} \\
& \mu=\frac{q}{6 \pi \eta r}=\frac{q}{f}
\end{aligned}
$$

$$
q \vec{E}=6 \pi \eta r \vec{v}
$$

Avec $\quad \mathbf{f}=6 \pi \boldsymbol{\eta} \mathbf{r}$
μ :ion mobility $\mathrm{m}^{2} \mathrm{~V}^{-1} \mathrm{~S}^{-1}$
r : ion radius
η : coefficient of viscosity of the medium, expressed in poiseuille $\left(\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}\right)$ in the S.I. and in the c.g.s. system in poise $\left(\mathrm{g} \mathrm{cm}^{-1} \mathrm{~s}^{-1}\right)$

4-3 Conductivity for an electrolytic solution:

Consider an electrolytic cell of cross-section S and length 1 subjected to a d dpV. We want to find the electric current intensity due to the displacement of i ons under the effect of the electric field and ionic concentration. This is done for cations.

$$
\mathbf{I}=\frac{\mathbf{d Q}}{\mathbf{d t}} \quad \mathrm{Q}: \text { is the total charge carried by the cations }
$$

$\mathrm{Q}_{+}=\mathrm{z}_{+} \mathrm{e} \mathrm{N}_{+}=\mathrm{z}_{+} \mathrm{e} N \mathrm{n} \quad \operatorname{avec}(\mathrm{N}=N \mathrm{n})$
N_{+}: number of cations
N : Avogadro number
$[+]$ cation concentration given by this equation $[+]=\frac{\mathbf{n}_{+}}{\mathbf{V}}$
so we have $\mathrm{Q}_{+}=\mathrm{z}_{+} \mathrm{e} N[+] \mathrm{V}$
In our volume element dv we can write $\mathrm{dQ}_{+}=\mathrm{Z}_{+}$e $N \quad[+] \mathrm{dV}$

$$
\mathrm{dQ}_{+}=\mathrm{z}_{+} \mathrm{e} N[+] \mathrm{S} \mathrm{dx}
$$

1 faraday $=96500$ coulombs $\mathrm{mol}^{-1}=N \quad \mathrm{e}^{-}$; ($\mathrm{e}^{-}=$electron charge $)$
$\mathrm{F}=96500 \mathrm{C} \mathrm{mol}^{-1}$
Therefore $\mathrm{dQ}_{+}=\mathrm{z}_{+} \mathrm{F} \quad[+] \mathrm{Sdx}$ and the electric current is written as:

$$
\mathbf{I}_{+}=\frac{\mathbf{d Q}}{\mathbf{d t}}=\mathbf{z}_{+} \mathbf{F}[+] \mathbf{s} \frac{\mathbf{d x}}{\mathbf{d t}}=\mathbf{z}_{+} \mathbf{F}[+] \mathbf{S}_{\mathbf{v}_{+}}
$$

$$
\begin{gathered}
\mathbf{V}_{+}=\boldsymbol{\mu}_{+} \mathbf{E} \\
\mathbf{I}_{+}=Z_{+} \mathbf{F}[+] S \mu_{+} \mathrm{E}
\end{gathered}
$$

Current intensity carried by the anions

The total current flowing through the tank $\quad \mathrm{I}=\mathrm{I}_{+}-\mathrm{I}$. donc

$$
I=\left(\sum_{i}\left|Z_{i}\right|[i]\left|\mu_{i}\right|\right) F S E
$$

Current density J is the ratio of electric current I to cross-sectional area.

Bionhvsics: Course and corrected exercises, 2nd year Biology degree

Conductivity of an electrolytic solution χ is the ratio of electric density to electric field.

$$
\chi=\frac{\mathbf{J}}{\mathbf{E}} \longmapsto x=\left(\left.\sum_{\mathbf{i}}\right|_{\boldsymbol{Z}_{\mathbf{i}}}|[\mathbf{i}]| \mu \mathbf{u}_{\mathbf{i}} \mid\right)^{F}
$$

Special case:
Consider a weak electrolyte solution consisting of $\mathrm{v}+$ positive ions and v - negative ions.
$[+]=v_{+} \alpha C^{M} \quad ;[-]=v_{-} \alpha C^{M} \quad$ aves $\quad \mathbf{U}_{+}\left|\mathbf{Z}_{+}\right|=\mathbf{V}_{-}\left|\mathbf{Z}_{-}\right|=\mathbf{Z}$
Z is the valence of the electrolyte, so for an electrolyte of valence Z and molar concentration C^{M}

$$
\begin{aligned}
& x=\left(\left|\boldsymbol{Z}_{+}\right|[+]\left|\boldsymbol{\mu}_{+}\right|+\left|\boldsymbol{Z}_{-}\right|[-]\left|\boldsymbol{\mu}_{-}\right|\right) \mathbf{F} \\
& x=\boldsymbol{Z} \boldsymbol{\alpha} \mathbf{C}^{\mathbf{M}}\left(\left|\boldsymbol{\mu}_{+}\right|+\left|\boldsymbol{\mu}_{-}\right|\right) \mathbf{F}
\end{aligned}
$$

Equivalent cation conductivity is defined as

and anions

And the equivalent solution conductivity

$$
\Lambda=\Lambda_{+}+\Lambda_{-}
$$

$\chi=Z^{M} \Lambda \quad$ Done $\quad \Lambda=\frac{\chi}{Z C^{M}}$
Λ : Expressed in ohm ${ }^{-1} \mathrm{~m}^{2}$ Eqg $^{-1}$

Biophysics; Course and corrected exercises, 2nd year Biology degree
 Exercices :

Exercice 1:

An aqueous solution is obtained by dissolving 0.18 g of glucose in 0.5 liters of water. 1-Calculate the molarity, molality and mass percentage (ratio of the mass of the solute to that of the solution X 100) of this solution, as well as the molar fractions of its various compounds, knowing that the molar mass of glucose is $180 \mathrm{~g} / \mathrm{mol}$ and that of water is $18 \mathrm{~g} / \mathrm{mol}$.
2-Calculate the new molarity if 1 liter of water is added to the previous solution (dilution)?
3-Personal work: Recalculate the remaining quantities from question 1 for this same dilution.

Exercise 2:

Take 1 liter of a strong 0.3 M CaCl 2 solution.
1-Calculate its ionic strength.
2-Personal work: Mix this solution with 2 liters of a $0.2 \mathrm{M} \mathrm{CaCl}_{2}$ solution. What is the ionic strength of the resulting solution?

Exercise 3:

Dissolve 12 g of CH 3 COOH in 1 liter of water. Calculate the concentrations of the various ions present in the solution, its equilibrium constant and its equivalent concentration, assuming a weak solution with a dissociation coefficient $\alpha=0.3$.

Exercice 4:

Dissolve $39.63 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{M}=132.1 \mathrm{~g} / \mathrm{mol}$ in 1 litre of water. Assuming partial solute dissociation of dissociation coefficient $=0.8$.
1-Calculate the osmolarity of the resulting solution and its freezing temperature ($\mathrm{K}_{\mathrm{c}}=1,86$ ${ }^{\circ} \mathrm{C}$. $\left.0 \mathrm{sm}^{-1} . \ell\right)$.

2-Personal work :

-Calculate the equilibrium constant of this solution.
-What would be the freezing temperature of a urea solution of the same molarity as the previous solution?

Exercise 5:

Consider an electrolytic cell of length $1=25 \mathrm{~cm}$, cross-section $\mathrm{S}=15 \mathrm{~cm}^{2}$ and resistance $\mathrm{R}=45 \Omega$.
Calculate the constant of this cell, its conductivity and the intensity of the electric current flowing through it, given that it is subjected to a potential difference $\mathrm{U}=60 \mathrm{mV}$.

Exercise 6:

Consider a strong 0.05 M NaCl solution, subjected to an electric field $\mathrm{E}=9.10^{-6} \mathrm{~V} / \mathrm{m}$.
Knowing that the mobility of Na^{+}ions is equal to $5.1 .10^{-8} \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ and that that of Cl^{-}ions is equal to $-7.9 .10-8 \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$, calculate the limiting velocities of these two ions, their

Biophysics; Course and corrected exercises, 2nd year Biology degree
coefficients of friction as well as the equivalent conductivity and the conductivity of the solution. We give $\mathrm{F}=96500 \mathrm{C} . \mathrm{mol}^{-1}$.

Answers :

Exercice 1 :

```
\(m g=0.18 \mathrm{~g} \quad, \quad M g=180 \mathrm{~g} / \mathrm{mol}\)
\(V=0,5 l\)
```

1- the molarity $C^{M}=\frac{n}{V}=\frac{m}{M V}=\frac{0,18}{180.0,5}=0,002 \mathrm{~mole} / \mathrm{l}$
the molarity $C^{m}=\frac{\text { nsolute }}{\text { msolution }}=\frac{m}{\text { Vmsolution }}=\frac{0,18}{1800,05}$
$C^{m}=0,002 \mathrm{moel} / \mathrm{kg}$
$C^{m}=0,2 \%$
$n g=\frac{m g}{M}=\frac{0,18}{180}=0,001 \mathrm{~mole}$
neau $=\frac{\text { neau }}{M}=\frac{0,51000}{18}=27,77$ mole
Molar fractions of water and glucose
$f g=\frac{n g}{n g+n e a u}=\frac{0,01}{0,01+27,77}=\frac{0,01}{27,787}=0,000359$
feau $=\frac{\text { neau }}{n g+n e a u}=\frac{27,77}{0,01+27,77}=\frac{27,77}{27,787}=0,999$

2-If 1 L of water is added to the previous solution, the new volume is

$$
V^{\prime}=0,5+1=1,51
$$

$$
C^{m}=\frac{n}{V^{\prime}}=\frac{0,18}{1801,5}=0.0006 \mathrm{~mole} / \mathrm{l}
$$

Exercice 2 :

$$
\mathrm{CaCl}_{2} \longrightarrow \mathrm{Ca}^{++}+2 \mathrm{cl}^{-}
$$

$V^{=} 1$ litre
$\mathrm{C}^{\mathrm{M}}=0,3$ mole $/ \mathrm{l}$

$$
F=\frac{1}{2}\left[\sum_{i} \quad|z i|^{2}[i]\right]
$$

Biophysics; Course and corrected exercises, 2nd year Biology degree
$=\frac{1}{2}\left[\left|z C a^{++}\right|^{2}\left[C a^{++}\right]+\left|z c l^{-}\right|^{2}[c l-]\right]$
$\left[\mathrm{Ca}^{++}\right]=\propto . \vartheta C^{M}=11 \quad 0,3=0,3$ mole of ion $/ \mathrm{l}$
[$\mathrm{cl}-]=210,3=0,6$ mole of ion $/ \mathrm{l}$
$F=\frac{1}{2}\left[(2)^{2} \cdot 0,3+(-1)^{2} \cdot 0,6\right]$
$F=\frac{1}{2}[1,2+0,6]=0,9$

Personal work

$$
\begin{aligned}
& F=\frac{1}{2}\left[\sum_{i}|z i|^{2}[i]\right] \\
& \frac{1}{2}=\left[\left|z c a^{++}\right|^{2}\left[C a^{++}\right]+\left|3 c l^{-}\right|^{2}\left[C l^{-}\right]+\left|3 C a^{++}\right|^{2}\left[C a^{++}\right]+\left|3 C l^{-}\right|^{2}\left[C l^{-}\right]\right]
\end{aligned}
$$

First solution
$V^{\prime}=2+1=3 l$
$\left[C l^{-}\right]_{1}=\alpha \cdot v . C_{1}^{M}=1 \cdot 2 \cdot 0.3 \frac{1}{3}=0,2$ mole of ion $/ \mathrm{l}$
$\left[\mathrm{Ca}^{+}\right]_{2}=\propto . \vartheta \cdot C_{2}^{M}=1 \cdot 1 \cdot 0,2 \frac{2}{3}=0,1333 \mathrm{~mole}$ of $\mathrm{ion} / \mathrm{l}$
$\left[\mathrm{Cl}^{-}\right]_{2}=0,266$ mole of ion $/ l$
$F=\frac{1}{2}[40,1+10,2+40.133+10,266]$
$F=1,3992$

Eexercice 3:

$\mathrm{CH} 3 \mathrm{CooH} \longleftrightarrow \mathrm{CHCOO}-+\mathrm{H}^{+}$

$$
\begin{gathered}
{\left[\mathrm{cH}_{3} \mathrm{Coo}^{-}\right]=\alpha \cdot \vartheta \cdot C^{M}=0,310,2=0,06 \mathrm{~mole} \text { of ion } / \mathrm{l}} \\
C^{M}=\frac{n}{V}=\frac{m}{M V}=\frac{12}{601}=0,2 \mathrm{~mol} / \mathrm{l} \\
M=122+4+162=60 \mathrm{~g} / \mathrm{mol} \\
k=\left[\mathrm{cH}_{3} \mathrm{Coo}^{-}\right] \frac{\left[\mathrm{H}^{+}\right]^{1}}{(1-\alpha) \mathrm{C}^{M}}=(0,06)^{1} \frac{(0,06)^{1}}{(1-0,3) 0,2}=0,0257 \\
C_{c H 3 \mathrm{Coo}^{-}}^{e q}=\mid z_{\mathrm{cH}_{3} \mathrm{Cooo}^{-}}\left[\mathrm{cH}_{3} \mathrm{Coo}^{-}\right]=10,06 \mathrm{eq} \mathrm{~g} / \mathrm{l} \\
C_{H^{+}}^{e q}=0,06 \mathrm{Eqg} / \mathrm{l} \\
C_{\text {solution }}^{e q}=0,062=0,12 \mathrm{Eq} \mathrm{~g} / \mathrm{l}
\end{gathered}
$$

Exercice 4 :

$$
\begin{aligned}
& \left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \leftrightarrow 2 \mathrm{NH}_{4}^{+}+\mathrm{SO}_{4}^{-2} \\
& C^{0}=i \mathrm{C}^{M}
\end{aligned}
$$

Biophysics; Course and corrected exercises, 2nd year Biology degree

$$
\begin{aligned}
& C^{M}=\frac{n}{V}=\frac{m}{M V}=\frac{39,63}{132,11}=0,3 \mathrm{~mol} / \mathrm{l} \\
& i=(1+\alpha(\vartheta-1))=1+0,8(3-1)=2,6 \\
& C^{o}=2,60,3=0,78 \text { osmole } / l \\
& \quad \Delta \theta=K_{c} \quad C^{o}=1,860,78=1,4508 C^{o}
\end{aligned}
$$

Personal work:

$K=\frac{\left[\mathrm{NH}_{4}^{+}\right]^{2}\left[\mathrm{SO}_{4}^{-2}\right]^{1}}{(1-\alpha) C^{M}}=(0,48)^{2} \frac{(0,24)^{1}}{(1-0,8) 0,3}$
$K=0,9216$
$\left[\mathrm{NH}_{4}^{+}\right]=\propto . \vartheta . \mathrm{C}^{M}=0,820,3=0,48$ mole of ion $/ \mathrm{l}$
$\left[\mathrm{SO}_{4}^{-2}\right]=0,8110,3=0,24$ mole of ion $/ \mathrm{l}$
$\Delta \theta=K_{c} C^{o}=1,860,3=0,558 C^{\circ}$
$C^{\circ}=i \quad C^{M}=0,3 \mathrm{~mol} / \mathrm{l}$
$i=1+\propto(\vartheta-1)=1$
$\propto=0$ for urea

Exercice 5 :

$R=\rho \frac{L}{S}$
The tank constant $L / S=25 / 15=1,66 \mathrm{~m}^{-1}$
$\rho=R \frac{S}{L} \quad$ with $\rho=\frac{1}{\chi}$
$R=\frac{L}{\chi S} \rightarrow \chi=\frac{L}{R S}=\frac{2510^{-2}}{451510^{-4}}=3,7 \Omega^{-1} \mathrm{~m}^{-1}$
$V=R i \rightarrow i=\frac{V}{R}=60 \frac{10^{-3}}{3,70}=0,00162 \mathrm{~A}$

Exercice 6 :

$\mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{cl}^{-}$
$E=9.10^{-6}$
$C^{M}=0,05 \mathrm{~mole} / \mathrm{l}$
$v=\mu E$
$v_{+}=\left|\mu_{+}\right| E=5,110^{-8} 9 \cdot 10^{-6}=4,59.10^{-13} \mathrm{~m} / \mathrm{s}$
$v_{-}=\left|\mu_{-}\right| E=7,9 \cdot 10^{-8} 9 \cdot 10^{-6}=7,11 \cdot 10^{-13} \mathrm{~m} / \mathrm{s}$
$\mu=\frac{q}{f} \rightarrow f=\frac{q}{\mu}$

Biophysics; Course and corrected exercises, 2nd year Biology degree

$f_{+}=\frac{q}{\left|\mu_{+}\right|}=1,6 \frac{\cdot 10^{-19}}{5,1 \cdot 10^{-8}}=3,13 \cdot 10^{-12} \mathrm{~kg} / \mathrm{s}$

$$
\begin{aligned}
& f_{-}=\frac{q}{\left|\mu_{-}\right|}=1,6 \frac{10^{-19}}{7,910^{-8}}=2,0210^{-12} \mathrm{~kg} / \mathrm{s} \\
& \tau_{+}=\propto\left|\mu_{+}\right| F=1.5,110^{-8} 96500=0,00492 \quad \Omega^{-1}(\text { eqg })^{-1} \mathrm{~m}^{2} \\
& \tau_{-}=\propto\left|\mu_{-}\right| F=1.7,910^{-8} 96500=0,00762 \quad \Omega^{-1}(\text { eqg })^{-1} \mathrm{~m}^{2}
\end{aligned}
$$

Additional exercises

Exercice 1:

Consider 0.5 liters of water ($\mathrm{M}_{\text {water }}=18 \mathrm{~g}$. mol-1) containing 24 g urea $\left(\mathrm{M}_{\mathrm{u}}=60 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$ and 36 g glucose $\left(\mathrm{Mg}=180 \mathrm{~g} \mathrm{~mol}^{-1}\right)$. Calculate the mole fractions, molar concentrations and weight concentrations of this solution.

Exercise 2:

Consider a solution obtained by dissolving 4.25 g of fully dissociated barium chloride of formula BaCl_{2} in a volume of $\mathrm{V}=200 \mathrm{ml}$ of water.

Data: $\mathrm{M}(\mathrm{Cl})=35.5 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \mathrm{M}(\mathrm{Ba})=137.3 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
Calculate the molarity, molality, weight concentration and ionic concentrations of the cations and anions.

Exercise 3:

1-Aqueous solution of CaSO_{4} with a molar concentration of $\mathrm{CM}=0.2 \mathrm{~mol} / \mathrm{l}$, totally dissociated into Ca^{++}and SO_{4}^{-2}. Calculate its osmolarity and ionic strength.

2- If we take 1 liter of this solution and add 2 liters of pure water, what is the ionic strength of the resulting solution?

Exercise 4:

An electrolyte $A B 2$ partially dissociates in water as follows
$\mathrm{AB}_{2} \longleftrightarrow \mathrm{~A}^{-2}+2 \mathrm{~B}^{+}$
The cryoscopic lowering of this decimolar solution is $0.36^{\circ} \mathrm{C}$.
1- What is the dissociation coefficient of this solution?
2- What is the equilibrium constant of this solution?
We give: Cryoscopic constant of water $\mathrm{Kc}=1.86^{\circ} \mathrm{C} . \mathrm{osmol}^{-1} .1$

Biophysics; Course and corrected exercises, 2nd year Biology degree

Answers :

Exercice 1 :

Calculate the molar fractions, molar concentrations and weight concentrations of this solution
Molar fractions :
Molar fractions of urea

$$
\begin{aligned}
& n_{\text {urea }}=\frac{m_{\text {urea }}}{M \text { urea }}=\frac{24}{60}=0,4 \text { mole } \\
& n_{g}=\frac{m g}{M g}=\frac{36}{180}=0,20 \text { mole } \\
& n_{\text {eau }}=\frac{m \text { water }}{M \text { water }}=\frac{0,51000}{18}=27,77 \text { mole } \\
& \text { for water }: 11 \rightarrow 1 \mathrm{~kg}=>n_{T}=n_{\text {urée }}+n_{g}+n_{\text {eau }}=0,4+0,20+27,77 \\
& \qquad n_{T}=28,37 \text { mole }
\end{aligned}
$$

$$
\begin{aligned}
& 0,5 \mathrm{l} \rightarrow 0,5 \mathrm{~kg} \rightarrow 0,51000 \mathrm{~g} \\
& \mathrm{f} \text { urea }=\frac{0,4}{28,37}=0,0140 ; \mathrm{C}_{\text {urea }}^{\mathrm{M}}=\frac{\mathrm{n}_{\text {urea }}}{\mathrm{V}}=\frac{0,4}{0,5}=0,8 \text { mole } / \mathrm{l} \\
& \mathrm{fg}=\frac{0,20}{28,37}=0,00704 ; \mathrm{C}_{\mathrm{g}}^{\mathrm{M}}=\frac{\mathrm{ng}}{\mathrm{~V}}=\frac{0,20}{0,5}=0,4 \mathrm{~mole} / \mathrm{l} \\
& \mathrm{f}_{\text {water }}=\frac{27,77}{28,37}=0978 ; \mathrm{C}_{\text {water }}^{\mathrm{M}}=\frac{\mathrm{n}_{\text {water }}}{\mathrm{V}}=\frac{27,77}{0,5}=55,54 \mathrm{~mole} / \mathrm{l} \\
& \mathrm{C}^{\mathrm{P}}=\mathrm{C}^{\mathrm{M}} \cdot \mathrm{M} \\
& \mathrm{C}_{\text {urea }}^{\mathrm{P}}=0,860=48 \mathrm{~g} / \mathrm{l} ; \mathrm{C}_{\mathrm{g}}^{\mathrm{P}}=72 \mathrm{~g} / \mathrm{l} ; \mathrm{C}_{\text {eau }}^{P}=999,72 \cong 1000 \mathrm{~g} / \mathrm{l}
\end{aligned}
$$

Exercice 2 :

$\mathrm{Bacl}_{2} \rightarrow \mathrm{Ba}^{++}+2 \mathrm{cl}^{-}$
$\mathrm{M}_{\text {Bacl }_{2}}=137,3+35,52=208.3 \mathrm{~g} / \mathrm{mol}$
molarity C^{M}
$\mathrm{C}^{\mathrm{M}}=\frac{\mathrm{n}}{\mathrm{V}}=\frac{\mathrm{m}}{\mathrm{MV}}=\frac{4,25}{208,30,2}=0,102 \mathrm{~mole} / \mathrm{l}$
molality C^{m}
$C^{m}=\frac{n_{\text {solute }}}{m_{\text {solvant }}}($ mole $/ \mathrm{kg})$
Vwater $=0,21 \rightarrow 0,2 \mathrm{~kg} \quad$ because 1 liter weighs about1 kg for an aqueous solution

Biophysics; Course and corrected exercises, 2nd year Biology degree
$\mathrm{C}^{\mathrm{m}}=\frac{n_{\text {soluté }}}{m_{\text {solvant }}}=\frac{4,25}{208,30,2}=0,102 \mathrm{~mole} / \mathrm{kg}$
ionic concentration
$[\mathrm{i}]=\propto \cup \mathrm{C}^{\mathrm{M}}$
$\left[\mathrm{cl}^{-}\right]=\propto \mathrm{v}_{\mathrm{cl}}{ }^{-} \mathrm{C}^{\mathrm{M}}=120,102=0,204$ mole of ion $/ \mathrm{l}$
$\left[\mathrm{Ba}^{++}\right]=\propto \mathrm{v}_{\mathrm{Ba}}^{++} \mathrm{C}^{\mathrm{M}}=110,102=0,102 \mathrm{~mole}$ of ion $/ \mathrm{l}$

Exercice 3 :

$\mathrm{CaSO}_{4} \longrightarrow \mathrm{Ca}^{++}+\mathrm{SO}_{4}^{-2}$

$$
\text { 1- } \mathrm{C}^{0}=\mathrm{i} \quad \mathrm{C}^{\mathrm{M}}
$$

$i=1+\alpha(v-1)=2, \quad C^{0}=20.2=0.4$ osmole $/ \mathrm{l}$
$F=\frac{1}{2}\left[\mathrm{Z}_{\mathrm{Ca}} \mathrm{a}^{++}\left[\mathrm{Ca}^{++}\right]+\mathrm{Z}_{\mathrm{SO}_{4}^{-2}}^{2}\left[\mathrm{SO}_{4}^{-2}\right]\right.$
$\left[\mathrm{Ca}^{++}\right]=\propto \mathrm{v}_{\mathrm{Ca}}^{++} \mathrm{C}^{\mathrm{M}}=110.2=0.2$ mole of ion $/ \mathrm{l}$
$\left[\mathrm{SO}_{4}^{-2}\right]=\propto v_{\mathrm{SO}_{4}^{-2}} \mathrm{C}^{\mathrm{M}}=0.2$ mole of ion $/ \mathrm{l}$
$\mathrm{F}=0.5(40.2+40.2)=0.8$
2- $\mathrm{V}^{\prime}=31$

$$
\mathrm{C}^{\mathrm{M}^{\prime}}=\frac{\mathrm{C}_{\mathrm{M}}^{1} \mathrm{~V}_{1}}{\mathrm{~V}^{\prime}}=\frac{0.21}{3}=0.066 \mathrm{~mole} / \mathrm{l}
$$

$\left[\mathrm{Ca}^{++}\right]=\propto \cup \mathrm{C}^{\mathrm{M}^{\prime}}=1 \quad 10.066=0.066 \mathrm{~mole}$ of ion $/ \mathrm{l}$
$\left[\mathrm{SO}_{4}^{-2}\right]=0.066$ mole of ion $/ \mathrm{l}$
$\mathrm{F}=0.5(40.066+40.066)=0.264$

Biophysics; Course and corrected exercises, 2nd year Biology degree

Chapter III: Surface phenomena

1-Surface tension :

The experiment shows some simple observations that highlight these phenomena:
1- Droplet formation on a plant leaf
2- Ascent of liquids in capillary tubes
3- A solid body can float on the surface of water.
4- A meniscus exists on the surface of a liquid, in contact with the container wall.
5- The presence of soap bubbles
These experiments demonstrate the existence of a force f at the surface of a liquid. This is a consequence of the specific properties of the liquid surface, which are different from those of the rest of the liquid.

1-1. Definition :

Inside the liquid, each molecule is subject to electrostatic Van der Walls-type forces of attraction, which arise due to the polarity of certain molecules, with the resultant force being zero.
On the other hand, surface molecules are essentially attracted towards the interior of the liquid, as air molecules are too few in number to achieve equilibrium; the resultant of the attractive forces of surface molecules is therefore directed towards the interior of the liquid, tending to compress the liquid and thus reduce its free surface.
Consequently, there is a force, f, between the interface of a liquid and another medium.
Surface tension σ is measured by the ratio of the force f to the length 1 over which it acts.

$$
\begin{aligned}
& \sigma=\frac{f}{l} \\
& \sigma \text { en } \mathbf{N} \cdot \mathbf{m}^{-1} ; \mathbf{f} \text { en } \mathbf{N} ; \mathbf{l} \text { en } \mathbf{m} .
\end{aligned}
$$

Surface tension depends on the liquid and the nature of the other part of the interface (gas, air, glass, metal...).

Ex: water / air,

$$
\boldsymbol{\sigma}=7310^{-3} \mathrm{~N} \cdot \mathrm{~m}^{-1} . \text { huile/air } \boldsymbol{\sigma}=3210^{-3} \mathrm{~N} \cdot \mathrm{~m}^{-1} .
$$

1-2 Adhesion of a liquid to a solid :

This is the work required to separate a liquid from a solid over an area of $1 \mathrm{~m}^{2}$. We call σ_{L} the surface tension of the liquid; σ s the surface tension of the solid and that of the liquid-solid interfacial tension $\sigma_{S_{L}}$. By separating the liquid from the solid, over $1 \mathrm{~m}^{2}$, we also create $1 \mathrm{~m}^{2}$ of liquid-air interface, $1 \mathrm{~m}^{2}$ of solid-air interface; the solid-liquid adhesion energy is therefore $W_{s t}=\left(\sigma_{s}+\sigma_{L}-\sigma_{s t}\right) S$

Biophysics; Course and corrected exercises, 2nd year Biology degree

In this equation, only $\sigma \mathrm{L}$ is known. The difference ($\sigma_{\mathrm{S}}-\sigma_{\mathrm{sL}}$) can be measured relatively easily, whereas the two terms cannot be measured separately.

1-3 Contact angle θ :

Considering the equilibrium of a liquid drop on a horizontal solid surface. Figure 3.1 clearly shows the existence of three (03) phases.

Figure 3.1

The equilibrium of point M is written (horizontal components of surface forces) :

$$
\sigma_{s}=\sigma_{s L}+\sigma_{L} \cos (\theta)
$$

In other words

$$
\sigma_{s}-\sigma_{s L}=\sigma_{L} \cos (\theta) \square \cos (\theta)=\frac{\sigma_{s}-\sigma_{s L}}{\sigma_{L}}
$$

The angle θ is called the contact angle. It can be measured. The work of adhesion can be written as :

$$
W_{s L}=\sigma_{L}(1+\cos \theta) S .
$$

We can see that the smaller the angle θ, the greater the work of adhesion. Consider the following cases:
$-\theta=0^{\circ}, \mathrm{W}_{\mathrm{SL}}=2 \sigma_{\mathrm{L}} \mathrm{S}=\mathrm{WL}$: the work of adhesion is equal to the work of cohesion of the liquid. This is the extreme case of equilibrium, corresponding to complete spreading of the liquid.
The condition $\mathrm{W}_{\mathrm{SL}}=\mathrm{W}_{\mathrm{L}}$ is the limiting case of perfect wetting. A priori, wetting is perfect if $\mathrm{W}_{\mathrm{SL}} \geq \mathrm{W}_{\mathrm{L}}$.
$-\theta=180^{\circ}, \mathrm{W}_{\mathrm{SL}}=0$: the work of adhesion is zero. Wetting is zero.
$-0<\theta<90^{\circ}$ (acute) to good but not perfect wetting.
$-90^{\circ}<\theta<180^{\circ}$ to a bad but non-zero wetting.

Biophysics; Course and corrected exercises, 2nd year Biology degree
 1-4 Examples of dampening applications :

In phytopharmacy: certain wetting agents are used in pharmacy to promote the penetration of drugs through the skin or mucous membrane.) Conversely, anti-wetting agents can be sought to reduce the cutaneous penetration of toxic products.
In the case of anti-parasite products, the liquid must adhere perfectly to the surface to block the insect's pores, thus preventing it from breathing. So, with a contact angle $\theta=0$, we have a wetting product.
In the case of weedkillers, on the other hand, wetting must be poor, as these products must not be harmful to insects, so we must choose anti-wetting products. Poor wetting may be due to a layer having formed on the surface of the solid, so this surface must first be treated (it must be well polished).
To determine a liquid's adhesion, or wetting, it is therefore important to accurately determine its surface tension.
There are several methods for measuring surface tension, including the capillary rise method (Jurin's law), the immersed slide method and the droplet method (Stalagmometry). In the following, we will describe the capillary rise method in detail

1- Capillary action :
 2-1 definition:

It is the phenomenon that explains, among other things, the rise (verticality) of liquids, against the effect of gravity, along a surface because of their surface tension.

2-2 Capillary Ascension Method(Law of Jurin) :

A tube made from a solid, whose wettability is defined by an angle θ, is immersed in a liquid. For good wetting, the liquid level rises $\mathrm{h}>0$ Figure3.2(a). With poor wetting, the liquid level falls Figure3.2(b).

Figure 3.2

Biophysics; Course and corrected exercises, 2nd year Biology degree

The smaller the radius or meniscus, the greater the difference in level h .
Let $\Delta \mathrm{F}$ be the attraction exerted by the tube on the inner liquid

$$
\Delta \mathrm{F}=2 \pi \mathrm{r} \sigma \cos \theta
$$

Equilibrium will be established when the attraction and the weight of the column compensate each other.

The weight of the liquid in the columnP=h $\pi \mathrm{r}^{2} \rho \mathrm{~g}$
g : intensity of gravity
h : height without meniscus
ρ : density of the liquid
$\mathrm{h} \pi \mathrm{r} 2$: volume of liquid column
Equating the two equations $\Delta \mathrm{F}=\mathrm{P}$ gives us:

$$
\sigma \cos (\theta)=\frac{h r \rho g}{2} \quad \text { Jurin's law }
$$

2-3 Surface tension measurement (capillary method)

By applying Jurin's law, we deduce a value for $\boldsymbol{\sigma}$ from the measurement of the height difference h and knowledge of the other parameters.

1- Surface tension force (liquid-gas interfaces) :

Consider a molecule (A) inside the liquid. It is surrounded on all sides by other molecules. If we neglect the influence of thermal agitation, the resultant of the forces of attraction experienced by molecule (A) is on average zero, since all directions are equivalent.

$$
\sum \vec{F} \equiv \overrightarrow{0}
$$

Figure 3.3
For another molecule (B) in Figure 3.3, located on the surface of the liquid, if we neglect the attraction of gaseous molecules, this molecule is drawn inwards on average perpendicular to the surface by neighboring liquid molecules. The same applies to all surface molecules, which thus form a kind of taut film that compresses the interior of the liquid. To bring the molecule (A) to the surface, i.e. to increase the surface area, the energy required to move a molecule from the liquid phase to the vapour phase must be supplied.

Any increase in surface area $(\Delta \mathrm{S})$ requires external energy ($\Delta \mathrm{E}$), such as $\Delta \mathrm{W}=\Delta \mathrm{E}=\sigma \Delta \mathrm{S}$

Biophysics; Course and corrected exercises, 2nd year Biology degree

The coefficient of proportionality σ, which is always positive, is called surface tension. Its unit is N / m or $\mathrm{J} / \mathrm{m}^{2}$.

Another definition still in use is to represent σ as a force (F) tangent to the surface.
Some surface tension measurements
Liquides $\left(20^{\circ} \mathrm{C}\right)$ σ (dynes/cm)
$\mathrm{H}_{2} \mathrm{O}$
72,8
Glycerin 60
Glycol 46
Benzene
28.5

Molten metals have surface tensions of the order of 500 dynes $/ \mathrm{cm}$.
The liquid-gas surface tension phenomenon will create excess pressure inside a drop or column.

3-1 Overpressure inside a drop :

Consider a spherical drop in figure 3.4. The membrane surrounding the drop exerts an overpressure inside the drop. δp
$\begin{aligned} \mathrm{P}_{0} & \text { : atmospheric pressure outside the drop } \\ & =1.01310^{5} \mathrm{~N} / \mathrm{m}^{2} \text { (pascals) }\end{aligned}$

Figure 3.4
P : internal pressure.
To calculate δp, we need to increase the volume of the drop from radius r to radius $\mathrm{r}+\Delta \mathrm{r}$, so we need to supply external energy, $\Delta \mathrm{E}$
The work supplied to the system is $\Delta \mathrm{W}=\delta F \Delta \mathrm{x}=\frac{\delta F}{S} S \Delta x=\delta p \Delta V$
$\Delta \mathrm{W}=\delta p \quad \Delta V=\delta p \Delta\left(\frac{4}{3} \pi r^{3}\right)=\delta p 4 \pi r^{2} \Delta r \quad-1-$
This work increases the surface area of the drop.:
$\Delta \mathrm{W}=\sigma \Delta S=\sigma \Delta\left(4 \pi r^{2}\right)=\sigma 8 \pi r \Delta r \quad-2-$
Equalizing -1- and -2- we obtain :
$p-p_{0}=\delta p=\frac{2 \sigma}{r} \quad$ Laplace's law for a drop.
Laplace's law is a relationship that links the pressure difference between the 2 faces of an elastic membrane or liquid film to the surface tension σ.

Biophysics; Course and corrected exercises, 2nd year Biology degree
 3-1 Overpressure inside a soap bubble :

Consider a soap bubble consisting of two membranes, an inner membrane of radius r and an outer membrane of radius $\mathrm{r}+\delta$ r Figure 3.5
σ surface tension of the soap solution
r : radius of inner membrane
$\mathrm{r}+\delta r$ radius of outer membrane

Figure 3.5

$$
\begin{array}{ll}
p-p^{\prime}=\frac{2 \sigma}{r} & -1-\text { overpressure created by the inner membrane } \\
p^{\prime}-p_{0}=\frac{2 \sigma}{r+\delta r} & -2-\text { overpressure created by the outer membrane }
\end{array}
$$

Adding these two equations gives us :

$$
\delta p=p-p_{0}=\frac{2 \sigma}{r+\delta r}+\frac{2 \sigma}{r}=\frac{4 \sigma}{r} \quad \delta r \lll \lll
$$

δp Overpressure inside the bubble compared with outside. So the overpressure inside a soap bubble is 2 times greater than that inside a drop.

3-3 Biological application: respiration in living beings

The surface area of the lungs is increased by the presence of alveoli. Expansion of the lungs requires considerable work, as the surface tension that glues the alveolar membranes together is high. To facilitate ventilation, surfactants reduce the surface tension on the inner surface of the alveoli.
The presence of these surfactants reduces the work required to expand the lungs: As the alveolus expands, the concentration of surfactants per unit area decreases, and surface tension increases. Resistance to expansion increases, protecting the alveoli from bursting [1]. P_{0} : Liquid pressure
P_{i} : Pressure inside of the cell

Biophysics; Course and corrected exercises, 2nd year Biology degree

Figure 3.6 Respiratory function in living organisms
[1] Kane/Sternheim Physique InterEditions

2- Adsorption :

Adsorption is a surface phenomenon by which atoms, ions or molecules (adsorbates) attachthemselves to a solid surface (adsorbent) from a gaseous phase, liquid or solid solution.

Biophysics; Course and corrected exercises, 2nd year Biology degree

Exercices:

Exercice 1

A 5 cm square metal frame is placed in a bath of fuel oil. To separate the frame from the liquid, a force of $7.3210^{-3} \mathrm{~N}$ must be exerted. Calculate the surface tension of the fuel oil (remember that separating the frame from the liquid creates two surfaces).

Exercise 2

A liquid has a surface tension coefficient $\sigma=25 \cdot 10^{-3} \mathrm{~N} \cdot \mathrm{~m}^{-1}$. Blow a soap bubble of radius $\mathrm{r}=$ 3 cm with this liquid.

1. Calculate the overpressure inside the bubble.
2. Calculate the total work expended to blow the bubble.

Exercise 3

1. A glass-wetting liquid of density $\rho=1.05 .103 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$ rises to an average height $\mathrm{h}=1.5$ cm in a vertical glass capillary tube of internal diameter $\mathrm{d}=1 \mathrm{~mm}$. Calculate the surface tension coefficient of the liquid.
2. What is the height reached in the same capillary tube if it is immersed vertically in mercury? Given: $\sigma_{\mathrm{Hg}}=50010^{-3} \mathrm{~N} / \mathrm{m}, \rho_{\mathrm{Hg}}=13600 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$,
$\Theta=135^{\circ}$.

Exercise 4

Consider a tube of internal diameter d immersed vertically in a liquid of surface tension σ and density ρ. Assume perfect wettability and denote by h the difference in level of the liquid in the tube.

With water, $\mathrm{h}_{0}=92.3 \mathrm{~mm}$. We give: $\rho_{0}=0.9973 .103 \mathrm{~kg} \cdot \mathrm{~m}^{-3}, 0=71.93 .10^{-3} \mathrm{~N} \cdot \mathrm{~m}^{-1}$. For benzene, $\mathrm{h}=42.4 \mathrm{~mm}$. Deduce the surface tension coefficient of benzene, given that its density ρ is $0.8840 .103 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$.

Additional exercises

Exercice 1

1. Calculate the overpressure in a drop of water with a radius of $1 \mathrm{~mm}(\sigma=73.6 \mathrm{mN} / \mathrm{m})$.
2. Calculate the overpressure in a soap bubble of 1 cm radius $(\sigma=30 \mathrm{mN} / \mathrm{m})$.

Exercise 2

A metal ball of radius r and density $\rho \mathrm{m}=7900 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$ floats on water $(\sigma=70 \mathrm{mN} / \mathrm{m}$ and $\rho=$ $\left.1000 \mathrm{~kg} \cdot \mathrm{~m}^{-3}\right)$. What is the value of r if the liquid is in contact with the sphere along a meridian circle?
-47-

Biophysics; Course and corrected exercises, 2nd year Biology degree

Ans : $\mathrm{r}=1.228 \mathrm{~mm}$

Exercise 3

In plants, the ascent of sap is favored by the wetting of the inner walls of circulation ducts. The height of ascent h is obtained by applying Jurin's law.

1. Demonstrate Jurin's law of capillary rise.
2. Calculate the height h for a radius of the order of $10 \mu \mathrm{~m}$, the contact angle θ being zero.

Given: $\sigma=70 \mathrm{mN} / \mathrm{m}$ and $\rho=1000 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$.
Ans : $\mathrm{h} \approx 1.4 \mathrm{~m}$

Exercise 4

A capillary tube was calibrated at $20^{\circ} \mathrm{C}$ with water that rose 8.31 cm to reach equilibrium (Θ $=0^{\circ}$). Using the same capillary, a sample of mercury was lowered by $3.67 \mathrm{~cm} .=13595$
$\mathrm{Kg} / \mathrm{m}^{3}$
a) Knowing that water $=73.10^{-3} \mathrm{~N} / \mathrm{m}$, evaluate for mercury $\left(\Theta=180^{\circ}\right)$,
b) What is the diameter of the capillary used?

Exercice n ${ }^{\circ} 5$

1.At the end of expiration, the total surface area of the pulmonary alveoli is $75 \mathrm{~m}^{2}$. Their volume is 31 . Calculate the average radius of an alveolus and the total number of alveoli if we consider them to have a spherical shape.
2.During inspiration, lung volume increases by 1.5 l. Calculate the increase in alveolar surface area.
3.The alveolar surface is covered by a lipid film with a surface tension of $20 \mathrm{mN} / \mathrm{m}$. Calculate the energy required to increase the surface area of the alveoli during inspiration.
4.Since the surface tension of the alveolar surface has become equal to $50 \mathrm{mN} / \mathrm{m}$ due to pathological circumstances, calculate the energy required for inspiration in this case.

Answer : 1. $r=0.12 \mathrm{~mm}, n=4.1410^{8}$ alvéoles; 2. $\Delta S=23 \mathrm{~m}^{2}$; 3. $W=0.46 \mathrm{~J} ; 4.1 .15 \mathrm{~J}$.

Biophysics; Course and corrected exercises, 2nd year Biology degree Answers

Exercice 1 :

Pull-out force: $F a=7.3210^{-3} \mathrm{~N}$
$F s=\sigma 2 L=\sigma 2 \times 4 a$ (2: two new surfaces)
When Fa is slightly greater than the surface tension force Fs, there will be
separation. $\quad F a=F s \rightarrow \quad \sigma=\frac{\mathrm{F}_{\mathrm{a}}}{8 \mathrm{a}}=\frac{7.3210^{-3}}{8510^{-2}}=8510^{-3} \mathrm{~N} / \mathrm{m}$

Exercice 2

1) $\Delta \mathrm{p}=\frac{4 \sigma}{\mathrm{r}}=\frac{42510^{-3}}{410^{-2}}=3.33 \mathrm{~N} / \mathrm{m}$
2) $\Delta \mathrm{W}=\sigma \Delta \mathrm{S}=\sigma 2\left(4 \pi \mathrm{r}^{2}\right)=8 \pi \pi \mathrm{r}^{2}=8 \pi 2510^{-3}\left(310^{-2}\right)^{2}$
$\Delta \mathrm{W}=5.65210^{-4} \mathrm{~J}$

Exercice 3

Jurin's law $\sigma \cos (\theta)=\frac{h r \rho g}{2}$
In the case of good wetting $\theta=0$
$1^{1^{-}} \quad \sigma=\frac{h r \rho g}{2}=38,6210^{-3} \mathrm{~N} / \mathrm{m}$
2- $\mathrm{h}=\frac{4 \sigma \cos \theta}{\mathrm{~d} \rho \mathrm{~g}}=\frac{4 J \cup \cup 10 \cos (15 \mathrm{~J})}{10^{-3} 136009,81}=-0.0106 \mathrm{~m}=-10.60 \mathrm{~mm}$

Exercice 4

For water $h_{0}=\frac{2 \sigma_{0}}{\rho_{0} g r}$
For benzen $h=\frac{2 \sigma}{\rho g r} \rightarrow \quad \sigma=\sigma_{0} \frac{h}{\rho_{0}} \frac{\rho_{0}}{\rho}=29,37510^{-3} \mathrm{~N} / \mathrm{m}$

Biophysics; Course and corrected exercises, 2nd year Biology degree

Chapter IV: Diffusion phenomena :

1- Diffusion :

If we mix 2 different miscible liquids (of different colors if possible), after a very short time, we notice that the mixture becomes homogeneous (liquids mix) for 3 reasons:
a) Mechanical agitation, vibrations, etc.
b) Temperature differences between the 2 liquids, which cause convection (molecules in the hot fluid are replaced by new molecules at lower temperatures).
c) Thermal agitation of the molecules.

The phenomenon of free migration of molecules among others, i.e., these molecules spread homogeneously throughout the space available to them.

1-1 Fick's formula: the law governing diffusion

Let $\Delta \mathrm{m}$ be the mass of a dissolved body diffusing over time Δ from point A to point B .
$\mathrm{C}_{\mathrm{B}}<\mathrm{CA}=$ liquid A denser than B

S : Pipe cross-section
Figure 4.1
Fick's law can be written as :
$\Delta m=-D \frac{C_{B}-C_{A}}{x_{B}-x_{A}} \Delta t S$
If A and B are very close, we have a differential
$\frac{\Delta m}{\Delta t}=-D \frac{\Delta C}{\Delta x} S=\Delta m=-D S \frac{\Delta C}{\Delta x} \Delta \mathrm{t}=-\mathrm{D} \frac{\Delta \mathrm{C}}{\Delta \mathrm{x}} S \Delta t$
$\frac{\Delta C}{\Delta x}$: Negative concentration gradient $(\Delta C<0, \Delta x>0$
$S: T u b e$ cross - section or diffusion surface $\left(m^{2} \mathrm{ou} \mathrm{cm}^{2}\right)$

- 50 -

Biophysics; Course and corrected exercises, 2nd year Biology degree
D : Diffusion coefficient that does not depend on the nature of the solvent or the nature of the solute. Unit of diffusion coefficient ($\left(\frac{m^{2}}{s}\right.$ ou bien $\frac{\mathrm{cm}^{2}}{s}$)
$\frac{\Delta m}{\Delta t}:$ Diffusion rate or mass of solute that has moved over time $\Delta \mathrm{t}$ from point x_{A} of weight concentration C_{A} to point x_{B} of weight concentration C_{B}.

Alternatively, we can have the number of diffusing moles (instead of the mass of molecules) per unit time $\frac{\Delta n}{\Delta t}(\Phi:$ diffusion molar flow $) \frac{\Delta n}{\Delta t}=-D S \frac{\Delta c^{M}}{\Delta x}$

The diffusion coefficient D depends on the experimental diffusion conditions temperature, nature of the solute and nature of the solvent.
$D=\frac{k_{B} T}{f}$
Where kB is Boltzmann's constant ($1.3810^{-23} \mathrm{~J} \mathrm{~K}^{-1}$), T: Temperature in K°
f : coefficient of friction which is defined as follows; if the particle moves at speed v in the liquid medium, it must overcome a friction force F proportional to $v F=f v$

In the particular case where the particle is spherical of radius r , we can show (Stokes' law) that $\mathrm{F}=6 \pi \eta \mathrm{r}$ vi.e. that $\mathrm{f}=6 \pi \eta \mathrm{r}$

D is proportional to temperature T . If both temperature and diffusion coefficient increase, then $\frac{\Delta n}{\Delta t}$ increases.

Consider two solutes with radii r_{1} and r_{2} diffusing in two media with viscosities η_{1} and η_{2} and temperatures T 1 and T 2 respectively.

We have:
$D_{1}=\frac{k T_{1}}{6 \pi \eta_{1} r_{1}}, \quad D_{2}=\frac{k T_{2}}{6 \pi \eta_{2} r_{2}} \quad$ so $\quad \frac{D_{2}}{D_{1}}=\frac{T_{2}}{T_{1}} \frac{\eta_{2}}{\eta_{1}} \frac{r_{1}}{r_{2}}$
$\longrightarrow D_{2}=\frac{T_{2}}{T_{1}} \frac{\eta_{2}}{\eta_{1}} \frac{r_{1}}{r_{2}} D_{1}$

We take the case of two solutes 1 and 2 which are different but diffuse under the same experimental conditions. ($\eta_{1}=\eta_{2}, \mathrm{~T}_{1}=\mathrm{T}_{2}$) So

$$
D_{2}=\frac{r_{1}}{r_{2}} D_{1}
$$

Biophysics; Course and corrected exercises, 2nd year Biology degree

In this particular case, let's assume that the volume density of the solute 1 molecules is equal to that of the 2 nd solute. $\left(\rho_{1} \approx \rho_{2}\right)$.

We have $\rho=\frac{m}{V}$ avec $V=\frac{4}{3} \pi \mathbf{r}^{3} \quad \mathrm{~V}:$ volume of a spherical molecule)

We then obtain for both solutes $\frac{r_{1}}{r_{2}}=\sqrt[3]{\frac{\boldsymbol{M}_{1}}{\boldsymbol{M}_{2}}}$ because $\left(\rho_{1} \approx \rho_{2}\right)$.
For two solutes of molar masses M_{1} and M_{2} diffusing under the same experimental conditions, the diffusion coefficient D_{2} is given by this formula :

$$
D_{2}=\sqrt[3]{\frac{M_{1}}{M_{2}}} D_{1}
$$

1-2 Complete mathematical expression of Fick's law (Fick's 2nd law) :

We need to replace $\Delta \mathrm{m}$ and $\Delta \mathrm{t}$ by differentials, in other words ratios by derivatives.:

$$
d m=-D \frac{\partial C}{\partial x} S d t \quad d m=J S d t \quad \text { with } J=-D \frac{\partial C}{\partial x}
$$

We use ∂ for the concentration gradient, as this is a partial derivative, C being a function of 2 variables x et t .

Let the volume element $\mathrm{dV}=\mathrm{S} \mathrm{dx}$
The number of moles entering during dt

Figure 4.2

$$
\mathrm{dn}_{1}=\mathrm{J}_{\mathrm{x}} \mathrm{Sdt}
$$

The number of moles leaving during dt
$\mathrm{dn}_{2}=\mathrm{J}_{\mathrm{x}+\mathrm{dx}} \mathrm{S}$ dt

Biophysics; Course and corrected exercises, 2nd year Biology degree

The number of moles contained in the volume element $d V$ is $d n d n=d_{1}-d_{2}=d C S d x=J_{x} S$ $\mathrm{dt}-\mathrm{J}_{\mathrm{x}+\mathrm{dx}} \mathrm{S} \mathrm{dt}$
$\mathrm{dn}=-\left(\mathrm{J}_{\mathrm{x}+\mathrm{dx}} \mathrm{S}\right.$ dt $-\mathrm{J}_{\mathrm{x}} \mathrm{S}$ dt)=-dJS dt with $c=\frac{n}{V}$
we obtain dC dx=-dJ dt

$$
\square \frac{d C}{d t}=-\frac{d J}{d x}
$$

In the particular case where $\frac{\partial C}{\partial t}=0$ (steady state)
Fick's 2nd law implies that $\frac{\partial^{2} C}{\partial x^{2}}=0 \square \mathrm{C}(\mathrm{x})=\mathrm{Ax}+\mathrm{B}$
Where A and B are constants. In the particular case where the regime is stationary, the variation C with x is a straight line.

1-3 Diffusion through a membrane:

We consider that $\mathrm{C} 1>\mathrm{C} 2$ avec
$\mathrm{C}(0)=\mathrm{C} 1$
$\mathrm{C}(\mathrm{e})=\mathrm{C} 2$

Consider a membrane with surface area S and thickness e, traversed by pores whose total surface area is denoted by Sp . This membrane separates two media whose molar concentrations are respectively $\quad C_{1 s}^{M}$ et $\quad C_{2 s}^{M}$.

The membrane allows solute molecules to diffuse. Assuming that $\quad C_{1 s}^{M}>C_{2 s}^{M}$ distribution is from 1 to 2 .

We propose to find the form of the concentration inside the membrane. If we assume that the diffusion regime is stationary and that the concentrations $\quad C_{1 s}^{M}$ et $\quad C_{2 s}^{M}$ are kept constant on both sides of the membrane during diffusion.

We are looking for the shape of CM inside the membrane, considering that the regime is stationary.:

$$
\frac{\partial C^{M}}{\partial t}=0
$$

Fick's 2nd law: $\frac{\partial C^{M}}{\partial t}=D \frac{\partial^{2} C}{\partial x^{2}}-2-\square \frac{\partial^{2} C}{\partial x^{2}}=0$

Using the boundary conditions:
$\mathrm{x}=0, \quad C^{M}(x)=C^{M}(0)=C_{1}^{M}$
$\mathrm{x}=\mathrm{e}, \quad C^{M}(x)=C^{M}(e)=C_{2}^{M}$
Using these boundary conditions, we obtain the constants A and B.

$$
A=\frac{C_{2}^{M}-C_{1}^{M}}{e} \quad, \quad \mathrm{~B}=C_{1}^{M}
$$

Replacing A and B in equation 3 gives us:

$$
C^{M}(x)=\frac{C_{2}^{M}-C_{1}^{M}}{e} x+C_{1}^{M}
$$

A is expressed in $\mathrm{mol} / \mathrm{m} 4$ and its value is negative, B is expressed in $\mathrm{mol} / \mathrm{m}^{3}$

Biophysics; Course and corrected exercises, 2nd year Biology degree

Figure4.3 : Variation in concentration inside the membrane inside the membrane $\mathrm{C}(\mathrm{x})$ is a negative slope line.

2- Osmosis and osmotic pressure:

2-1 Définition :

Two compartments separated by a selective hemi-permeable membrane Figure 4.4, permeable only to water..

Two compartments separated by a selective hemi-permeable membrane Figure 4.4, permeable only to water.

- Compartment I contains an aqueous
aqueous solution of a body that cannot pass through the membrane.
- Compartment II contains pure water.

Figure 4.4

The system is therefore not in equilibrium, as all the water diffuses from II to I (compartment II is completely empty).

This passage of pure solvent through a hemipermeable membrane is called osmosis, from the less concentrated solution to the more concentrated one.

2-2 Osmotic pressure

To measure the pressure causing the water flow, the experiment is carried out in the Dutrochet osmometer (Fig. 4.5) or the following set-up:

Biophysics; Course and corrected exercises, 2nd year Biology degree

The ascent of the liquid in the compartment containing the solution generates an overpressure Hydrostatic overpressure, which opposes the pressure which causes the water to diffuse.

Figure 4.5
At equilibrium, the hydrostatic pressure that balances the diffusion of water into the solution
is called osmotic pressure. In other words, the flow of solvent produces an imbalance. So, to achieve equilibrium, sufficient hydrostatic pressure must be exerted on the solution.

Definition: the osmotic pressure of a solution is the pressure that must be exerted on the solution to prevent its pure solvent from crossing the membrane separating the 2 phases.

It is given by van 't Hoff's law
$\pi=\rho g h=C^{0} R T$

- h : height difference (m), g: gravity $=9.81 \mathrm{~m} / \mathrm{s}^{2}, \rho$: density, R: perfect gas constant $=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$, T : absolute temperature in Kelvin, C^{0} : osmolar concentration $=\mathrm{i}$ C_{M} (osmole/l) and π osmotic pressure pascals ($\mathrm{N} / \mathrm{m}^{2}$).
- In the case of two aqueous solutions opposed to pure water across a hemipermeable membrane, the osmotic pressure is equal to the sum of the osmotic pressures $\pi=$ $\pi_{1}+\pi_{2}$

$$
\pi=R T\left(C_{1}^{0}+C_{2}^{0}\right)
$$

Biophysics; Course and corrected exercises, 2nd year Biology degree

If two solutions of concentrations C 1 and C 2 are separated by a hemipermeable membrane, the solvent will diffuse from the less concentrated hypotonic solution to the more concentrated hypertonic solution. In this case, osmotic pressure is equal to the osmotic pressure difference $\quad \pi=R T\left(C_{1}^{0}-C_{2}^{0}\right)$

Two solutions are iso-omotic if, compared to a perfect hemipermeable membrane is opposed to a pure solvent, they have the same osmotic pressure, therefore the same osmolar concentration..

Sens de diffusion de solvant Avec $C_{1}^{0}>C_{2}^{0}$

$$
\pi_{1}=\pi_{2} \Leftrightarrow R T C_{1}^{0}=R T C_{2}^{0} \Leftrightarrow C_{1}^{0}=C_{2}^{0}
$$

Iso-osmolar and hemipermeable membrane \Leftrightarrow iso-omotic same osmotic pressure.

2-3 Biological applications:

- Cell membranes (red blood cells) separate the extracellular and intacellular media.
- - If the external medium is hypotonic (less concentrated), water penetrates the cells, causing them to swell - a phenomenon known as turgor.. $C_{1}^{M}<C_{2}^{M}$)

- If the external environment is hypertonic (more concentrated), the cell loses all its water and shrinks (plasmolysis). $C_{1}^{M}>C_{b^{2}}^{M}$)

3-Permeability :

The membrane's porosity is defined as the ratio of the total surface area of Sp pores to its surface area.

Biophysics; Course and corrected exercises, 2nd year Biology degree
$\mathcal{E}_{0}=\frac{S_{p}}{S}<1$
Fick's first law is expressed as a function of S and S_{p}

$\Delta C^{M}=C_{2}^{M}-C_{1}^{M}, \quad$ the quantity $\frac{\varepsilon_{0} S}{e}$ is called the permeability of the membrane and is denoted by Pe , which is the same as velocity. Fick's 1 st law can therefore be written as a function of permeability as follows $\frac{d n}{d t}=-P_{e} S \Delta C^{M}$

Biophysics; Course and corrected exercises, 2nd year Biology degree Exercices :

Exercice 1:

1- Show, for spherical particles, that the diffusion coefficient is inversely proportional to the cube root of the molar mass?

2- The diffusion coefficient of lactose is $4.8 \cdot 10^{-6} \mathrm{~cm}^{2} \cdot \mathrm{~s}^{-1}$ and its molar mass is 342 g . Calculate the diffusion coefficient of urea if its molar mass is 60 g .

3- To purify urea in a two-compartment system separated by a membrane, the diameter of the molecules must be less than the diameter of the membrane pores. Calculate its minimum value. (Knowing that $\eta=10^{-2}$ poise and $\mathrm{T}=37^{\circ} \mathrm{C}$)

4- A hemoglobin solution with a concentration of 3.10-4 mol/l diffuses through a membrane with a diffusing surface area $S=600 \mathrm{~mm}^{2}$ to a concentration of $7.10^{-5} \mathrm{~mol} / \mathrm{l}$. Given Dhemoglobin $=6 \cdot 9 \cdot 10^{-7} \mathrm{~cm}^{2} / \mathrm{s}$ and Mhemoglobin $=68 \mathrm{Kg} / \mathrm{mol}$.

Determine the mass of hemoglobin in micrograms that has moved 2 cm over 5 minutes.
Boltzmann's constant $\mathrm{k}_{\mathrm{B}}=1,38.10^{-23} \mathrm{~J} / \mathrm{K}$

Exercice 2:

Consider a porous membrane separating two compartments containing sucrose at concentrations of 0.5 and $0.2 \mathrm{~mol} / 1$. These concentrations are kept constant as the sucrose molecules diffuse across the membrane. Steady state is assumed.

- What is the direction of the diffusion current density J ?
- Find the sucrose diffusion coefficient.
- Establish the law of variation of the concentration inside the membrane.
- What is the value of the sucrose current density at $25^{\circ} \mathrm{C}$?
- What would be the molar flow of sucrose at $0^{\circ} \mathrm{C}$?

We give: Molar flow of sucrose $\phi s=1.210^{-2} \mathrm{~mol} . \mathrm{s}^{-1}$ at $25^{\circ} \mathrm{C}$.
Total membrane pore surface $\mathrm{Sp}=0.05 \mathrm{~m}^{2}$.
Membrane thickness $\mathrm{h}=10 \mu \mathrm{~m}$

Biophysics; Course and corrected exercises, 2nd year Biology degree

Personal work

Exercice 1 :

At $25^{\circ} \mathrm{C}$, the mobilities of anions and cations in a $\mathrm{NH}_{4} \mathrm{NO}_{3}$ solution that dissociates completely into NH^{+}and NO^{-}ions are respectively $\mu_{+}=7,610^{-8} \mathrm{~m}^{2} \mathrm{~s}^{-1} \mathrm{~V}^{-1}$ et $\mu=-7,410^{-8}$ $\mathrm{m}^{2} \mathrm{~s}^{-1} \mathrm{~V}^{-1}$

1- Calculate the friction and diffusion coefficients of the cations and anions?
2- Assuming these two ions are spherical, calculate the radii of the cations and anions?

Exercice2:

A container is separated by a diffusing membrane (surface area $\mathrm{S}=200 \mathrm{~cm}^{2}$ and thickness 0.12 mm) into two compartments of volume $\mathrm{V}_{1}=1.61$ and $\mathrm{V}_{2}=1.41$ containing 0.5 mol urea and 0.8 mol glucose respectively.

1- Determine the initial molar flux of urea and glucose in mol/s. Knowing that the diffusion coefficient of urea at the membrane is $\mathrm{Du}=10^{-9} \mathrm{~m} 2 / \mathrm{s}$,

We give Murea= $60 \mathrm{~g} / \mathrm{mol}$ and Mglucose $=180 \mathrm{~g} / \mathrm{mol}$.
2- What is the mass concentration of urea at equilibrium?

Biophysics; Course and corrected exercises, 2nd year Biology degree Answers:

Exercice 1:

1- $D=\frac{c s t}{\sqrt[3]{M}}$
$D=\frac{k T}{f}$, with $\mathrm{f}=6 \pi \eta \mathrm{r} \square D=\frac{k T}{6 \pi \eta r}$
$\rho=\frac{m}{V} ; \quad \mathrm{M}=N \mathrm{~m} ; V=\frac{4 \pi}{3} r^{3}$
$m=\rho V=\rho \frac{4 \pi}{3} r^{3} \square \frac{M}{N}=\rho V=\rho \frac{4 \pi}{3} r^{3}$
$\square \quad r=\sqrt[3]{\frac{3 M}{N \rho 4 \pi}} \quad-2$ -
By replacing -2- in -1- we obtain

$$
D=\frac{k T}{6 \pi \eta} \sqrt{\frac{N \rho 4 \pi}{3}} \frac{1}{\sqrt[3]{M}}
$$

So $\quad c s t=\frac{k T}{6 \pi \eta} \sqrt{\frac{N \rho 4 \pi}{3}} \quad D=\frac{c s t}{\sqrt[3]{M}}$

$$
\begin{array}{r}
2-\frac{D_{1}}{D_{2}}=\sqrt[3]{\frac{M_{2}}{M_{1}}} \quad D_{2}=D_{1} \sqrt[3]{\frac{M_{2}}{M_{1}}} \\
D_{2}=4,8 \quad 10^{-6} \quad \sqrt[3]{\frac{342}{60}}=8.57{10^{-6} \mathrm{~cm}^{2} / \mathrm{s}}^{\text {a }}
\end{array}
$$

3- The minimum membrane pore size is the diameter of the molecules.

$$
\begin{aligned}
D_{\text {urea }}=\frac{k T}{6 \pi \eta r_{\text {uree }}} & \square r_{\text {uree }}=\frac{k T}{6 \pi \eta D_{\text {urea }}}=\frac{1.3810^{-23} 310}{6 \pi 10^{-3} 8.5710^{-10}} \\
r_{\text {urea }} & =2.6410^{-10} \mathrm{~m}
\end{aligned}
$$

pore diameters $=2 \mathrm{r}_{\text {urea }}=5.2910^{-10} \mathrm{~m}$

Dr Mokdad Naouel MCA, University Oran1 Ahmed Ben Bella.

Biophysics; Course and corrected exercises, 2nd year Biology degree

$$
\begin{gathered}
\text { 3- } \frac{\Delta m}{\Delta t}=-D S \frac{\Delta C}{\Delta x}=-D S \frac{C_{2}^{P}-C_{1}^{P}}{\Delta x} \\
\Delta m=\frac{-6.910^{-7} 10^{-4} 60010^{-6}\left(710^{-5}-310^{-4}\right) 10^{3} 68}{210^{-2} 560}=9,71 \quad 10^{-9} \mathrm{~kg}
\end{gathered}
$$

$$
\Delta m=9,71 \mu g
$$

Exercice 2 :

$\mathrm{I} \longrightarrow$	
$C_{1}^{M}=0.5$ mole $/ \mathrm{l}$	$C_{2}^{M}=0.2$ mole $/ \mathrm{l}$

1- 1- Direction of diffusion from I to II from the most concentrated to the least concentrated

$$
D_{s a c}=\frac{k T}{6 \pi \eta r_{s a c}}
$$

$$
\frac{\Delta n}{\Delta t}=-D_{s a c} S_{p} \frac{\Delta C}{\Delta x}=-D_{s a c} S_{p} \frac{\left(C_{2}-C_{1}\right)}{h}
$$

$D_{s a c}=-\left(\frac{\Delta n}{\Delta t}\right) \frac{h}{S_{p}\left(C_{2}-C_{1}\right)}=\frac{1.210^{-2} 10^{-5}}{0.05(0.2-0.5) 10^{3}}$
$D_{\text {sac }}=0.08 \quad 10^{-7}=8 \quad 10^{-9} \mathrm{~m}^{2} / \mathrm{s}$
The law of variation of concentration, working in a steady state $\frac{\partial C}{\partial t}=0$
$\frac{\partial C}{\partial t}=D \frac{\partial^{2} C}{\partial x^{2}} \quad$, we therefore obtain $\mathrm{C}(\mathrm{x})=\mathrm{Ax}+\mathrm{B}$
Using the boundary conditions $\mathrm{C}(0)=\mathrm{C}_{1}$ and $\mathrm{C}(\mathrm{e})=\mathrm{C}_{2}$, we find that $\mathrm{C}(\mathrm{x})$ is written as follows:

$$
\mathrm{C}(\mathrm{x})=\frac{C_{2}-C_{1}}{h} x+C_{1}
$$

Biophysics; Course and corrected exercises, 2nd year Biology degree
$\mathrm{C}(\mathrm{x})=\frac{(0.2-0.5) 10^{3}}{10^{-5}} x+0.510^{3} \mathrm{~mol} / \mathrm{m}^{3}$
$\mathrm{C}(\mathrm{x})=-3 \quad 10^{7} x+0.510^{3}$
Current density:
$\mathrm{J}=-\mathrm{D} \operatorname{sac} \frac{\partial C}{\partial x}=-0.08 \quad 10^{-7}\left(\begin{array}{ll}-3 & 10^{7}\end{array}\right)=0.24 \mathrm{~mol} / \mathrm{s} \mathrm{m}$
$\Phi_{n}=-D S_{p} \frac{\Delta C}{\Delta x}=-\frac{k T}{6 \pi \eta r} S_{p} \frac{\Delta C}{\Delta x}$
$\frac{\Phi_{1}}{\Phi_{2}}=\frac{\boldsymbol{T}_{1}}{\boldsymbol{T}_{2}} \quad \Phi_{2}=\Phi_{1} \frac{T_{1}}{T_{2}}=1,210^{-2} \frac{(273)}{(273+25)}=0.01099 \mathrm{~mol} / \mathrm{s}$

Biophysics; Course and corrected exercises, 2nd year Biology degree Exercices :

Exercice 1 :

The upwelling of sap in trees is the result of osmotic pressure exerted by the difference in sugar concentration between the sap at root level and the water in the soil.

Knowing that 10 g of the mass of sap is in the form of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ in one liter of sap at a temperature of $27^{\circ} \mathrm{C}$.

1- Calculate the concentration of sugar in the sap, expressed in moles/liter.
2- Calculate the osmotic pressure
3- The maximum height reached by the sap in these trees.
Given: $\mathrm{C}=12, \mathrm{H}=1, \mathrm{O}=16(\mathrm{~g} / \mathrm{mol})$ and $\mathrm{R}=8.31 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mole}^{-1}$.

Exercise 2 :

A semi-permeable membrane separates two solutions at $20^{\circ} \mathrm{C}$. One contains 4 g of glucose, molar mass $180 \mathrm{~g} / \mathrm{mol}$, completely dissociated in 10 liters of water, and the other contains 9.5 g of MgCl_{2}, molar mass $95 \mathrm{~g} / \mathrm{mol}$, in the same volume of water, 50% dissociated.

- What is the physical phenomenon observed? Can you explain?
- What is the resulting osmotic pressure exerted on the membrane?

Personal work

Exercice 1 :

What is the height of ascent of an aqueous solution containing $10^{-4} \mathrm{~mol} / 1$ of sodium proteinate $\mathrm{Na}_{18} \mathrm{P}$, with dissociation coefficient $\alpha=0.25$, in the tube of a Dutrochet osmometer immersed in a container containing pure water at $30^{\circ} \mathrm{C}$ at equilibrium. (We'll assume that the density of the solution is equal to that of water and that the osmometer membrane is strictly hemipermeable).

Exercise 2:

The cell membrane of red blood cells is considered, for a short time, to be impermeable to NaCl and glucose, while it is permeable to urea. Given that the average intracellular osmolarity of red blood cells is 0.31 osmol l^{-1}, what can be expected if red blood cells are immersed in each of the following 7 aqueous solutions?

Biophysics; Course and corrected exercises, 2nd year Biology degree

NaCl	Glucose	urea
(1) $9.1 \mathrm{~g} / \mathrm{l}$	(2) $55.8 \mathrm{~g} / \mathrm{l}$	(7) $18.6 \mathrm{~g} / \mathrm{l}$
(3) $7.3 \mathrm{~g} / \mathrm{l}$	(4) $45 \mathrm{~g} / \mathrm{l}$	
$(5) 11.7 \mathrm{~g} / \mathrm{l}$	(6) $72 \mathrm{~g} / \mathrm{l}$	

$\mathrm{M}_{\mathrm{NaCl}}=58.5 \mathrm{~g} \mathrm{~mol}^{-1}, \mathrm{M}_{\text {glucose }}=180 \mathrm{~g} \mathrm{~mol}^{-1}, \mathrm{M}_{\text {urea }}=60 \mathrm{~g} \mathrm{~mol}^{-1}$

Answer:

Exercice 1:

$C^{M}=\frac{n}{V}=\frac{m}{M V}=\frac{10}{(342) 1}=0.029$ mole $/ \mathrm{l}$
$\pi=R T C^{0}$
$\pi=8.3143000 .02910^{3}=7.29210^{4}$ pas
$\pi=\rho g h \Rightarrow h=\frac{\pi}{\rho g}=\frac{7.29210^{4}}{10^{3} 9,81}=7.43 \mathrm{~m}$

Exercice 2:

The phenomenon observed is osmosis because the membrane is selective, allowing only the passage of water molecules.
molecules.

$\pi=R T\left(C_{1}^{0}-C_{2}^{0}\right)$
$C_{1}^{M}=\frac{m_{1}}{M V}=\frac{4}{18010}=0.0022 \mathrm{~mole} / \mathrm{l}$
$C_{2}^{M}=\frac{m_{2}}{M V}=\frac{9,5}{9510}=0.01$ mole $/ l$
Glucose will not dissociate so $\alpha=0$ and therefore :
$C_{1}^{0}=C_{1}^{M}=0.0022$ osmole $/ l$

Biophysics; Course and corrected exercises, 2nd year Biology degree $C_{2}^{0}=i C_{2}^{M}=(1+\alpha(v-1)) C_{2}^{M}$

$C_{2}^{0}=i C_{2}^{M}=(1+0.5(3-1)) 0.01=0.02$ osmole $/ l$
$\pi=8.314293(0.02-0.0022) 10^{3}=4.336010^{4}$ pas

Biophysics; Course and corrected exercises, 2nd year Biology degree

Chapter V: Study of viscosity :

1- Laminar and turbulent flows :

A liquid is the seat of internal friction. If we set a region of a liquid in motion, we see 2 things:
a- This movement spreads from close to close to neighboring regions.
b- It progressively weakens if you stop moving it. This liquid friction is due to Van der Walls forces of attraction (molecular attraction), which oppose the relative movements of neighboring molecules.
This internal fluid friction is called viscosity.

$$
\mathrm{V}_{1}
$$

Consider two parallel liquid surfaces Figure 5.1 of area $\Delta \mathrm{S}$ distances from Δx and moving at two different speeds V_{1} and V_{2}. They have a relative velocity $\Delta \mathrm{V}=\mathrm{V}_{1}-\mathrm{V}_{2}$.

The parallel velocity of 2 adjacent layers characterizes the laminar flow regime (velocity distribution is the same).

Figure 5.1
The viscosity strength is :
$\Delta f=\eta \Delta S \frac{\Delta V}{\Delta x}, \frac{\Delta V}{\Delta x}$ is the velocity gradient
η : the liquid's viscosity coefficient.
The presence of viscosity therefore results in a pressure difference between the ends of the tube when a fluid is flowing smoothly through a horizontal tube:

In other words, there's a pressure drop. Pressure decreases in proportion to the distance covered by the fluid. During its flow, a fluid can present two flow regimes: laminar flow or turbulent flow. The transition from laminar to turbulent flow depends on the Reynolds number Re.
$R_{e}=\rho \frac{v D}{\eta}$
R_{e} is a dimensionless number, ρ : fluid density in $\mathrm{kg} / \mathrm{m}^{3}$, v : flow velocity in $\mathrm{m} \mathrm{s}^{-1}$,
D: pipe diameter in m and η :fluid viscosity in $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}$
-67-
Dr Mokdad Naouel MCA, University Oran1 Ahmed Ben Bella.

La transition du régime laminaire au régime turbulent s'observe Figure 5.2 pour $R_{e} \approx R_{e c}=2000$

If we take a sufficiently narrow cylindrical tube (capillary tube), the only possible flow regime is laminar, as the layers of fluid slide over each other without mixing. The flow velocity has a parabolic distribution, is zero on the walls and passes through a maximum at the center of the tube.

The volume flow (volume per second) ($\mathrm{m} 3 / \mathrm{s}$) in this tube is given by Poiseuille's formula

$$
Q_{v}=\frac{\pi}{8 \eta} \frac{\Delta P}{L} R^{4} \quad \begin{aligned}
& \text { Laminar, linear or Poiseuille } \\
& \text { regime }
\end{aligned}
$$

L: tube length, $\Delta \mathrm{P}$: pressure difference between tube inlet and outlet R: tube radius

The average speed is $\quad \bar{V}=\frac{\Delta P R^{2}}{8 \eta L}$

$\frac{\Delta P}{L}:$ Represents pressure drop per unit length

2- Flow resistance and viscosity measurements

a- Resistance to flow :
Resistance to flow is defined by the quantity R :

$$
R=\frac{8 \eta L}{\pi R^{4}}=\frac{128 \eta L}{\pi D^{4}} \quad \text { Avec } \quad \mathrm{D}=2 \mathrm{R} \quad \text { et } \quad R=\frac{\Delta P}{Q_{v}}
$$

Biophysics; Course and corrected exercises, 2nd year Biology degree

In the case of a series duct system, the flow resistances add up to
$R_{T}=\sum_{i=1}^{n} R_{i}=R_{1}+R_{2}+$ \qquad

In the case of a parallel flow system, the total flow resistance is given by : $\frac{1}{R_{T}}=\sum_{i=1}^{n} \frac{1}{R_{i}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots$

Application: pulmonary circulation model:

- Blood arrives through the right heart, passes through the capillaries, in contact with the pulmonary alveoli, and exits through the left heart Figure 5.3.

The circulation is made up of different networks:
arterial network: \longrightarrow arterioles \longrightarrow capillaries
The venous network: \longrightarrow capillaries \longrightarrow veins.

Figure 5.3

a- Viscosity measurements :

There are several methods for measuring viscosity, including :
-Ostwald viscosimeter (Poiseuille's law)
-Hoppler viscosimeter (Stokes' law)
-Covelle rotating cylinder.
The Hoppler viscometer is described in detail below:
A solid sphere is dropped, in free fall, between 2 divisions of the apparatus filled with a liquid of known viscosity η_{0} et the time of fall to the distance travelled $\mathrm{x} 0=\mathrm{v} 0 \mathrm{t} 0$ (measured) -1-.

Repeat the operation with the same sphere in another liquid of unknown viscosity η_{1} which travels the same distance $\mathrm{x}_{1}=\mathrm{v}_{1} \mathrm{t}_{1}$ such that $\mathrm{x}_{1}=\mathrm{x}_{0} \quad-2-$

$$
-1-=-2-\longleftrightarrow \mathrm{v}_{1} \mathrm{t}_{1}=\mathrm{v}_{0} \mathrm{t}_{0} \quad \longleftrightarrow \frac{t_{0}}{t_{1}}=\frac{v_{1}}{v_{0}}
$$

Biophysics; Course and corrected exercises, 2nd year Biology degree
Using Stokes' law:

$$
\begin{aligned}
& v_{1}=\frac{2}{9} r^{2}\left(\rho_{2}-\rho_{1}\right) \frac{g}{\eta_{1}} \\
& \nu_{0}=\frac{2}{9} r^{2}\left(\rho_{2}-\rho_{0}\right) \frac{g}{\eta_{0}}
\end{aligned}
$$

$\rho 2$: density of solid, $\rho 1$: density of liquid 1 and $\rho 0$: density of liquid 0 .

$-3-=-4-\Longleftrightarrow \frac{t_{0}}{t_{1}}=\frac{v_{1}}{v_{0}}=\frac{\left(\rho_{2}-\rho_{1}\right)}{\left(\rho_{2}-\rho_{0}\right)} \frac{\eta_{0}}{\eta_{1}}$
We deduce the viscosity $\eta 1$ of the liquid

3- Stokes' law

A spherical solid of radius r moving at speed v in a fluid encounters resistance from the liquid due to the viscosity of the medium η. This force, which opposes the force of motion of the solid, is :
$f=6 \pi \eta r V \quad$ (Stokes' law).
If the driving force $\overrightarrow{F_{m}}$ is gravity corrected for buoyancy, noted as $\overrightarrow{F_{a}}$. The driving force is given by this equation : $\overrightarrow{F_{m}}=\vec{P}+\overrightarrow{F_{a}}$. Falling speed becomes constant when this driving force is balanced by the force of friction.

$$
\begin{aligned}
& \sum \vec{F}=\overrightarrow{0} \Leftrightarrow \overrightarrow{F_{a}}+\vec{f}+\vec{P}=\overrightarrow{0} \Rightarrow \vec{P}=-\left(\overrightarrow{F_{a}}+\vec{f}\right) \\
& \Leftrightarrow|P|=\left|F_{a}+f\right| \\
& \Leftrightarrow m g=F_{a}+6 \pi \eta r V
\end{aligned}
$$

$$
\rho_{1} \frac{4}{3} \pi r^{3} g=\rho_{2} \frac{4}{3} \pi r^{3} g+6 \pi \eta r V
$$

$$
V=\frac{2}{9} r^{2}\left(\rho_{1}-\rho_{2}\right) \frac{g}{\eta} \quad \text { Stokes' law (falling speed) }
$$

Biophysics; Course and corrected exercises, 2nd year Biology degree

Falling speed therefore varies as the square of the radius. Larger grains sediment, and the velocity is negligible if the grains are small enough.

3-1 Application: measuring sedimentation velocity

Measurement of sedimentation velocity when particles (red blood cells) are subjected to gravity g followed by centrifugal acceleration γ.

Blood can be considered as a suspension of red blood cells in plasma with viscosity $\eta=1.46$ 10^{-3} pas s , subjected to gravity g .

Red blood cells are considered spherical, with an average radius $\mathrm{r}=2.7 \mu \mathrm{~m}$. The density of the red blood cells $\rho_{0}=1100 \mathrm{~kg} / \mathrm{m}^{3}$, The density of the plasma $\rho_{1}=1020 \mathrm{~kg} / \mathrm{m} 3, \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$

Using Stokes' formula, we obtain the sedimentation rate of these red blood cells:

$$
V=\frac{2}{9} r^{2}\left(\rho_{0}-\rho_{1}\right) \frac{g}{\eta}
$$

$$
V=\frac{2}{9}\left(2.710^{-6}\right)^{2}(1100-1020) \frac{9.8}{1.4610^{-3}}=0.87 \mu m \mathrm{~s}^{-1}
$$

i.e. a speed of approximately $3.14 \mathrm{~mm} / \mathrm{h}$

If the acceleration of gravity g is replaced by a centrifugal acceleration γ. This centrifugal force must be sufficient to neglect diffusion phenomena due to thermal agitation and the concentration gradient created.

Let's consider a molecule of mass m , located at distance x from the rotor rotating at constant angular velocity $\mathrm{w}=2 \pi \mathrm{~N}$.

The particle is subjected to :
Centrifugal force $\mathrm{Fc}=\mathrm{ma} \gamma=\mathrm{ma}^{2}$

- - Where ma is the apparent mass of the particle in its medium, equal to its real mass minus the mass associated with the Archimedean dust..

$$
\begin{aligned}
& m_{a}=m-m=m\left(1-\frac{m}{m}\right)=m\left(1-\frac{\rho_{0}}{\rho}\right) \\
& F_{c}=m\left(1-\frac{\rho_{0}}{\rho}\right) x w^{2}
\end{aligned}
$$

Biophysics; Course and corrected exercises, 2nd year Biology degree

Friction force $F=f v$ where $f:$ coefficient of friction .

Steady state is reached when the friction force balances the centrifugal force. $\mathrm{F}_{\mathrm{c}}=\mathrm{F}$

This ratio depends solely on the nature of the particle and the medium in which it is immersed, and defines the Svedberg constant S, expressed in seconds (s) or Svedbergs (S) as follows:
$1 \mathrm{~S}=10^{-13} \mathrm{~s}$.

$$
S w^{2} x=v=\frac{d x}{d t}
$$

The steady-state condition is

$$
\begin{aligned}
& \int \frac{d x}{x}=S \quad w^{2} d t \\
& \ln \frac{x_{2}}{x_{1}}=S \quad w^{2}\left(t_{2}-t_{1}\right)
\end{aligned}
$$

During the $\Delta \mathrm{t}$ ultracentrifugation time, the abscissa of particle x varies from x 1 to x 2 .

$$
S=\frac{m\left(1-\frac{\rho_{0}}{\rho}\right)}{f} \quad f=\frac{k T}{D}=\frac{R T}{N D}
$$

where D is the diffusion coefficient of the molecule and N is the avogadro number. Knowing that the molar mass is given by this equation $\mathrm{M}=\mathrm{N} \mathrm{m}$. By replacing the exprsession of m in the equation for Svedberg's constant
we obtain :
$M=\frac{R T}{\left(1-\frac{\rho_{0}}{\rho}\right)} \frac{S}{D}$

Biophysics; Course and corrected exercises, 2nd year Biology degree

Experimental measurement of S by ultracentrifugation and knowledge of the diffusion coefficient D enable us to determine the molecular molar mass of the macromolecule.

Exercices :

Exercice 1 :

A viscous Newtonian liquid with a dynamic viscosity coefficient $\eta=1 m P a . s$ and a density of $1000 \mathrm{~kg} . \mathrm{m}^{-3}$ flows through a 1 cm -diameter pipe. What is the flow rate in litres $/ \mathrm{min}$ required to change from laminar to turbulent flow?

Exercise 2:

In the aorta of a normal subject, the systolic velocity vs is twice the mean velocity v , the diastolic velocity vd is half the mean velocity. Determine the flow regimes in the aorta at the start of diastole and systole.

Given: radius of the aorta: 1 cm and volume flow $\mathrm{Qv}=5.4$ liters $/ \mathrm{min}$.

Exercise 3:

In a viscometer, a certain volume of water flows in 1 min ; the same volume of a patient's blood flows in 3 min 20 sec .

Determine the relative viscosity of the patient's blood of density $1050 \mathrm{~kg} / \mathrm{m}^{3}$.

Exercice 4 :

A spherical particle of radius $\mathrm{r}=30 \mathrm{~nm}$, density $\mathrm{d}=1.3$ is dropped without initial velocity into a medium of viscosity $\eta=0.2 \mathrm{mPa} . \mathrm{s}$ and density $\rho_{0}=1 \mathrm{~g} / \mathrm{cm} 3$.

Calculate the diffusion coefficient D at $\mathrm{T}=27^{\circ} \mathrm{C}$.
Establish the expression for the limiting sedimentation velocity. Calculate its value.

Exercise 5:

Using an ultracentrifuge with angular velocity w, at 293 K , determine the Svedberg constant of a protein A in water $S A=4.4 \mathrm{~Sv}$.

Establish the two expressions for the Svedberg constant.
Establish the expression for the molar mass. Calculate the value of MA knowing that the density $\rho_{\mathrm{A}}=1330 \mathrm{~kg} / \mathrm{m}^{3}$ and the diffusion coefficient $\mathrm{DA}=63 \cdot 10^{-12} \mathrm{~m}^{2} / \mathrm{s}$.

Under the same experimental conditions, a second protein B is centrifuged, with sedimentation constant $\mathrm{SB}=8.8 \mathrm{~Sv}$ and density ρ_{B} close to ρ_{A}.

Biophysics; Course and corrected exercises, 2nd year Biology degree

Determine the molar mass of protein B.

Exercice 6 :

A globular particle dropped without initial velocity into a medium of viscosity $\eta=1 \mathrm{mPa} . \mathrm{s}$ and density $\rho_{0}=1 \mathrm{~g} / \mathrm{cm} 3$, almost instantaneously reaches its limiting velocity v_{L}.

Subjected to ultracentrifugation at 60000 rpm , and when it is $\mathrm{x}=10 \mathrm{~cm}$ from the axis of rotation, its speed is equal to v.

Calculate the ratio v / v_{L} at this distance from the axis.
Calculate the distance covered by this particle in 1 hour, given that its Svedberg constant is equal to 14 Sv

Answers :

Exercice 1 :

$$
R=\frac{\rho \bar{v} D}{\eta} \text { with } \bar{v}=\frac{Q_{v}}{s} \quad \text { Hence } Q_{v}=\frac{\eta \pi}{2 \rho} \times R \times r=2.6110^{-4} l / \mathrm{min}
$$

Exercice 2:

Average speed: $v=\frac{Q_{v}}{s}=\frac{5.410^{-3}}{60 \pi\left(10^{-2}\right)^{2}}=0,287 \mathrm{~m} / \mathrm{s}$
In systole $v_{s}=2 v=0,574 m / s$
In diastole $v_{d}=v / 2=0,143 m / s$
Critical flow velocity

$$
v_{c}=\frac{\eta R}{\rho D}=0,419 \mathrm{~m} / \mathrm{s}
$$

In systole, therefore, the regime is turbulent; in diastole, it is laminar.

Exercise 3:

Let's call V the volume of water (index 1) or blood (index 2) flowing out.
$V=\left(Q_{v} \times t\right)_{\text {eut }}=\left(Q_{v} \times t^{\prime}\right)_{\text {sems }}$

Biophysics; Course and corrected exercises, 2nd year Biology degree
With $D=\frac{\pi \times \Delta P \times r^{4}}{8 \eta L}$ et $D^{\prime}=\frac{\pi \times \Delta P^{\prime} \times r^{4}}{8 \eta^{\prime} L}$ hence
$\frac{Q_{v} \times \eta}{\Delta P}=\frac{Q_{v}{ }^{\prime} \times \eta^{\prime}}{\Delta P^{\prime}}$ Since $\Delta \mathrm{P}$ is proportional to a ρ, we deduce:
$\frac{Q_{v}}{Q_{v}}=\frac{\rho}{\rho^{\prime}} \cdot \frac{\eta^{\prime}}{\eta} \cdot \frac{t^{\prime}}{t} \quad$ soit $\frac{\eta}{\eta^{\prime}}=\frac{t^{\prime}}{t} \cdot \frac{\rho^{\prime}}{\rho}=\frac{200}{60} \times 1,050=3.5$

Exercice 4 :

1- $D=\frac{k T}{f}=\frac{k T}{6 \pi \eta r}=\frac{1.3810^{-23}(300)}{6 \pi 0.210^{-3} 3010^{-9}}=3.6610^{-11} \mathrm{~m}^{2} / \mathrm{s}$
2- $v_{L}=\frac{2}{9} \frac{r^{2}}{\eta} g \rho_{0}(d-1)=\frac{2}{9} \frac{\left(3010^{-9}\right)^{2}}{0.210^{-3}} 1010^{3}(1.3-1)=0.1 \frac{m}{s}$

Exercice 5 :

1- $S_{V}=\frac{\left(m-m_{0}\right)}{f}=\frac{v}{\gamma}$
2- $M_{A}=\frac{S_{v} R T}{D_{A}\left(1-\frac{\rho_{0}}{\rho_{A}}\right)}$

$$
M_{A}=\frac{4.410^{-13} 8.314293}{6310^{-12}\left(1-\frac{1000}{1330}\right)}=68.56 \mathrm{~kg} / \mathrm{mol}
$$

3- $M_{B}=M_{A}\left(\frac{S_{B}}{S_{A}}\right)^{3 / 2}=139.91 \mathrm{~kg} / \mathrm{mol}$

Exercice 6 :

1- $\frac{v_{L}}{v}=\frac{g}{\gamma}=\frac{g}{x \omega^{2}}$
$\frac{v}{v_{L}}=\frac{x \omega^{2}}{g}=\frac{1010^{-2}(6283.185)^{2}}{10}=394.78410^{3}$

Biophysics; Course and corrected exercises, 2nd year Biology degree
$\omega=2 \pi N=2 \pi\left(\frac{60000}{60}\right)=6283.185 \mathrm{rd} / \mathrm{s}$

$$
2-\quad S_{V}=\frac{v}{x \omega^{2}}
$$

$$
\begin{aligned}
& v=S_{V} x \omega^{2}=1410^{-13} 1010^{-2}(6283.185)^{2}=5.5210^{-6} \mathrm{~m} / \mathrm{s} \\
& l=v t=5.5210^{-6} 3600=0.0198 \mathrm{~m}
\end{aligned}
$$

Bibliographic Reference:
[1]- R Atlani ; Cahiers du PCEM, PCEM Pharmacie 1èr cycle universitaire ; Editions Robert Atlani (2000) Boulogne.
[2]Salah Belazreg, Rémy Perdrisot et Jean-Yves Bounaud, Biophysique UE3,3 $3^{\text {ème }}$ Edition,EdiSciences.
[3]Jacques René Magné et Rose-Marie Magné-Marty, Collection PCEM1/ PCEM2, Rappels de cours exercices et QCM corrigés, Edition ellipes.
[4]Kim Bonello et Hugo Figoni, Biophysique, UE3, Editions VERNAZOBRES-GREGO.

