Chapitre 4 : Application aux fonctions
elémentaires I

Dans ce chapitre il s'agit d'ajouter a notre catalogue de nouvelles fonctions
cosh, sinh, tanh, arccos, arcsin, arctan, Argch, Argsh, Argth.

Les objectifs spécifiques

Al'issue de ce chapitre, l'apprenant sera capable de :
e Rappeler les fonctions logarithmiques et exponentielles vues en terminale.
o Définir et étudier les fonctions réciproques des fonctions trigonométriques.

o Définir et étudier les fonctions hyperboliques et leurs réciproques.

1. Fonction puissance, fonction logarithmique et fonction
exponentielle

1.1. Fonction puissance

q Définition

On appelle fonction puissance d'un réel a positif, la fonction f; définie sur R par: ‘

fa(x) =a* = exln(a).

? Exemple

o 3V2 = V2in3, ‘

° 5—2 — e—21n5'

Q Remarque

La fonction puissance est strictement positive du fait de sa notation exponentielle :
¥x e R, a* = &M@ > (),

Propriétés :
Pourtousa, b > 0, on a les égalités suivantes :
e VxeR:In(a") = xIn (a).

X

a
e Vx,yeR:a* =a*Xaeta™” = —-
a

e VxeR:(a")? =a".
e YxeR:(ab)* =a*xb.
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Etude de la fonction puissance :
Soit la fonction f, définie sur R par: f,(x) = a*.
Comme x = a* = e*™ @ | elle est continue et dérivable sur R, car composition de fonctions
continues et dérivables sur R.
Onaalors:Yx € R : fi(x) = (" @Y =1n (@)e*™ @ =1n (a) a*.
Le signe de la dérivée dépend donc du signe de In (a).

e Sia> l,onaalors:Yx € R : f/(x) > 0, la fonction puissance est croissante.

e Si0<a<lonaalors:¥Yx € R: f/(x) <0, lafonction puissance est décroissante.

Limite a l'infini ;

=1 [ o |
lim o = 4= lim a* =1
T+ T+
lim o= =1l lim o = 420
I =t =0 T —=—o

)/- ; Jalx) = " wver a1
of

I

1.2. Fonction logarithmique

Proposition :

1

Il existe une unique fonction, notée In :]0, +oo[— R telle que (In(x))’ = — pour tout x > 0, et on a
X

In(1) =0.

De plus cette fonction vérifie (pour touta, b > 0):

1.In (a X b) =1n (a) + In (b).
2.1n (l) = —In (a).
a

3.In (@") = nln (a), pourtousn € N,
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4. In est une fonction continue, strictement croissante donc, elle définit une bijection de ]0, +oo][

surR.

Q Remarque

In () s'appelle le logarithme naturel ou aussi logarithme népérien. ‘

Limites particuliéres :

e Ilim In(x)= +oo.

X — +00
e Ilim In(x)= —oco.
x—0F

1
e fim O,
xX— 400 X
e Ilim xIn(x)=0.
x— 0"

In (1
e gim 0¥
x—0 X

1.3. Fonction exponentielle

q Définition

La fonction réciproque de In :]0,+oco[— R s'appelle la fonction exponentielle, notée

exp : R —]0, +oo[.
Q Remarque

La fonction exp : R —]0, +oo[ est une fonction continue, strictement croissante et dérivable sur R,
ou (exp(x))” = exp(x),pourtoutx € R.

¥ y=exp x




Propriétés des exponentielles :

Soienta, bet@ desréels:

o ¢?x el = ettt
1
e — —¢ ¢
ea
ea
e — = ea_b_
eb

° (ea)a — eaa.

Limites particuliéres :

o lim e* = +o00.

X — +00
. lim e’ =0.
X — —00
ex
. lim = +00

2. Fonctions trigonométriques et leurs inverses

2.1. Fonctions trigonométriques

Les fonctions sinus et cosinus :

Fonction sin x CcoS T
Domaine de définition R R
Parité impaire paire
Période T=2r || T=2r
Dérivée Cos T —sinx
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Propriétés :
Les fonctions sinus et cosinus satisfont les propriétés suivantes, pour tout x € R :

o cos%(x) + sin’(x) = L.

cos? (x) = %(1 + cos (2x)).

sin? (x) = %(1 — cos (2x)).

cos (2x) = cos? (x) — sin? (x).

sin (2x) = 2 cos (x) sin (x).

"Les fonctions tangente et cotangente" q Définition

¢ On appelle tangente la fonction tan (ou tg ) définie par
sin (x)
cos (x)

ouA:{g+k7r:keZ}.

tan (x) = ,pourtoutx e R\ A

¢ On appelle cotangente la fonction cot définie par
cos (x)

sin (x)
ouB={kn:keZ)

cot (x) = ,pourtoutx e R\ B

Q Remarque

Les fonctions tangente et cotangente sont continues et dérivables sur leurs domaines de définition et
l'ona

1
(tan (x)) = ——— =1 + tan? (x), pourtoutx € R \ A.
cos? (x)
-1
(cot (x))" = — 5 = —(1 + cot? (x)), pourtoutx € R \ B.
sin” (x)
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i %; |tﬂ.11(33) |
_ L?T Vo i
T T2
- = v —

-7 1 |
: 1) = !
' el ' cot(z)! !

| ' o=

2.2. Fonctions circulaire réciproques

Fonction x » arccos x
Considérons la fonction cosinuscos : R — [-1, 1], x — cos x.

Pour obtenir une bijection a partir de cette fonction, il faut considérer la restriction de cosinus a
l'intervalle [0, r]. Sur cet intervalle la fonction cosinus est continue et strictement décroissante, donc
la restriction cos : [0, ] — [—1, 1], est une bijection.

Sa fonction ( bijection ) réciproque est la fonction arccosinus, arccos : [—1, 1] — [0, x].

- — o T

arccos(x)

€T

[ -

Propriétés :
e Yxe[-1,1],ona:cos (arccos (x)) = x.
e Yx € [0,r],ona:arccos (cos (x)) = x.

e Sixe[0,7m]: cos(x) =y & x = arccos(y).
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e (arccos (x)) = _—, Vxe]l-1,1][.

V1 — x2
Fonction x » arcsin x

M ﬂ .. . . . .
La restriction sin : [—=, =] — [—1, 1] est une bijection, car sur cet intervalle la fonction sinus est
continue et strictement croissante. Alors,

Sa fonction réciproque est appelée fonction arcsinus et est notée : arcsin, La restriction

o
in : [-1,1] — -, =
arcsin [ ] [ > 2]

X — arcsin (x)

Y
m 1 arcsin(z)
2 :
b O :: v T
-1 1
{ |-
2

Propriétés :
e Vx e [-1,1],ona:sin (arcsin (x)) = x.

e Vxe [—%, g],on a:arcsin (sin (x)) = x.

e Six € [—g, 72—T] : sin (x) =y & x = arcsin (y).
1
e (arcsin (x)) = — Vxel-1,1].

- X
Fonction x » arctan x

T
La restrictiontan : | — > —[ — R est une bijection, car sur cet intervalle la fonction tan est continue

2

et strictement croissante.

T
Sa fonction réciproque est la fonction arctangente, arctan : R —] — 5 5[.
y T
r=—
2
arctan r
O xr




Propriétés :

e VYx € R,ona:tan (arctan (x)) = x.

e VYxe [—g, g],on a:arctan (tan (x)) = x.

e Sixe]- z, g[: tan (x) = y © x = arctan (y).

2
1
e Lafonction arctan est dérivable sur R, et l'on a (arctan (x))’ = :
1+ x2
3. Fonctions hyperboliques et leurs inverses
3.1. Fonctions hyperboliques
q Définition
Les fonctions de la variable réelle x
e +e . et —e* sinh (x) € -1 1
h = ) h = )t h = = ’ th = ’
cosh (x) 2 o ) 2 anh (x) cosh (x) e**+1 coth (x) tanh (x)

(x #0),
s'appellent respectivement cosinus hyperbolique, sinus hyperbolique, tangente hyperbolique et
cotangente hyperbolique.
Propriétés :
1. La fonction cosh est paire et les fonction sinh, tanh, coth sontimpaires.
2. Pourtoutx € R, on ales relations :
cosh(x) + sinh(x) = €%, cosh(x) — sinh(x) = e7*,
1
coth (x)’
3. Les fonction cosh, sinh, tanh sontindéfiniment dérivables surR, et ['on a
o (cosh (x))" = sinh (x).
o (sinh (x))" = cosh (x).

cosh?(x) — sinh?(x) = 1, 1 — tanh?(x) =

1
o (tanh (x)) = ——— = 1 — tanh® ().
cosh”(x)
, -1
4. La fonction coth est indéfiniment dérivable sur R*, et l'on a (coth (x))" = —
sinh” (x)

coth(x)

th(x)

10



3.2. Fonctions hyperboliques réciproques

Fonction x » Argch

La fonction cosh est continue, strictement décroissante sur | — 0o, 0], strictement croissante sur
[0, +c0[. On ne peut donc définir 'application réciproque comme fonction continue strictement
monotone qu'en considérant la restriction cosh : [0, +oo[— [1, +oo[ est une bijection.

Sa fonction réciproque est Argch : [1, +o0o[— [0, +o0[, (Argument cosinus hyperbolique )
u
Argeh(x)

Propriétés :
e Yx € [1,+4o00[, cosh (argch (x)) = x.
e Vx € [0, +oo[, argch (cosh (x)) = x.
e Vxe[l,+o0[, argch (x) =1In (x + \/)ﬁ).

e La fonction argch est continue sur [1;+oco[, dérivable sur ]1;+oco[, et l'on a

1
(argch (x)) = .
x2 -1
Fonction x > Argsh
sinh : R — R est une fonction continue, strictement croissante ( vérifiant lim,_,_, sinh (x) = —oo

etlim,_,, sinh (x) = +00), c'est donc une bijection.
La fonction réciproque estargsh : R — R, (Argument sinus hyperbolique ).

)
Argsh(z)

Propriétés:

e Vx € R, sinh (argsh (x)) = x.

e Yx €R, argsh (sinh (x)) = x.

e VxeR, argsh(x) =In(x+ m).

1
Va2+ 1

e Lafonction argsh est continue, dérivable surR, etl'ona: (argsh (x)) =

11



Fonction x » Argth

L fonction fanh est continue et strictement croissante de R sur ] — 1, +1][. Elle admet donc une
fonction réciproque. Alors, la fonction tanh:R —]—1,1[ est une bijection, on note
Argth ;] — 1, 1[— R safonction réciproque.

Argth(z)

Propriétés :
e VYx €] —1,1], tanh (argth (x)) = x.
e VYx eR, argth (tanh (x)) = x.

1 1+
e Yx e R, argth (x) = = 1In( x).
2 1-x
1
e Lafonction argth est continue et dérivable sur] — 1; 1[, etl'ona:(argth (x)) = L
- X

4. Exercices

Exercicel:

Calculer les quantités suivantes :
L aresin (1)
.arcsin (—).
2

2
).
3. arctan( V3).

2. arccos(

4. arccos (cos (?ﬂ)).

5.arccos (cos (_Tﬂ)).

Exercice 2:
Déterminer l'ensemble de définition des fonctions suivantes :
L f(x) =

cos (x)
3 +sin (x)
2. g(x) = arcsin (%).
3. h(x) = arccos (1 — 2x?).
2(1 - x))

4. k(x) = arctan ( 3 5
X—X

12
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Exercice 3:
Calculer les dérivées des fonctions suivantes :

X
x+2)'

2.8(x) = argsh (x* + 1).

1. f(x) = arcsin (

1
3. h(x) = arctan (=) e 2,
x

Exercice 4:

3 Vs
1. Montrer que: 0 < arccos(z) < T

3
2. Résoudre :arccos (x) = 2 arccos (Z).

Exercice 5:

) X
Soit la fonction f définie par: f(x) = arcsin (x) —

 Déterminer le domaine ou f elle est définie et continue.

e Surquel ensemble f est-elle dérivable? puis, calculer sa dérivée.

Vi
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