
Chapitre 5 : Développement limité I

Les développements limités sont l'outil principal d'approximation locale des fonctions. Chercher un
développement limité d'une fonction  au voisinage d'un point  c'est chercher un polynôme qui, au
voisinage de , se comporte comme .

Les objectifs spécifiques

A l'issue de ce chapitre, l'apprenant sera capable de :

Connaître les différentes formules de Taylor.

Connaître les développements limités usuelles.

Mener des opérations sur les DL.

1. Formule de Taylor

1.1. Formule de Taylor-Young

Théorème :

Soit  ,  . Supposons que  est de classe  sur  et  existe
(finie). Alors , on a

,

où  est une fonction définie sur  telle que .

Remarque :

Le terme  avec  lorsque , sera noté par .

1.2. Formule de Maclaurin Young

Lorsque  dans la formule précédente, on obtient la formule de Maclaurin à l'ordre 
avec reste de Young :

,

avec  lorsque .

2. Développement limité

2.1. Développement limité au voisinage de 0

Définition

Soit  une fonction définie sur un voisinage de , sauf peut-être en  On dit que  admet un
développement limité d'ordre  au voisinage de , s'il existe un intervalle ouvert  de centre  et des
constantes  tels que pour tout , on a
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ou  avec 

Le polynôme  est dit partie régulière du développement limité et 
 le reste ou terme complémentaire.

Exemple

Pour , on obtient par division suivant les puissances croissantes à l'ordre 

or,  quand , dʼoù le développement limité de .

Théorème :

Si  admet un DL d'ordre  au voisinage de , alors ce DL est unique.

Conséquence :

Si  admet un DL à l'ordre  au  et f de classe , alors

.

Théorème :

Une fonction de classe  sur un intervalle  ( ) et que  existe. Alors  admet au voisinage
de  le développement limité d'ordre  suivant 

Exemple

Le développement limité d'ordre 4 de quelques fonctions usuelles au voisinage de  :

1. .

2. .

3. .

4. .

5. .

6. .

2.2. Développement limité au voisinage d'un point

Pour déterminer le (DL) au voisinage de , on pose   : ( ). Puis, on écrit le
(DL) au voisinage de  et on remplace par 
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Exemple

DL de la fonction  au voisinage de  d'ordre .

On pose :

On a DL de la fonction  au voisinage de  :

.

Alors,

Ainsi,

Dʼoù,

Exemple

DL de la fonction  au voisinage de  d'ordre .

On pose :

On a :

Donc,

, Alors

Ainsi,
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2.3. Développement limité au voisinage de l'infini

Définition

Le développement limité de  au voisinage de l'infini, se ramène à un développement limité au
voisinage de , en posant :

Exemple

Développer à l'ordre , la fonction  au voisinage de .

On pose : , alors .

.

Alors,

.

Donc,

.

Exemple

Développer à l'ordre , la fonction  au voisinage de .

On pose : , donc si .

Ainsi,

.

2.4. Opérations sur les développements limités

Soient  deux fonctions dont les développements limités au  sont 

Ou 
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Somme et produit :

Le développement de la somme  est 

Le produit admet le développement suivant :

Exemple

DL d'ordre  au voisinage de  de la fonction  est

Ainsi,

Exemple

DL d'ordre  au voisinage de  de la fonction  est

Ainsi,

Quotient :

On a 

Si  et . Alors,

Donc,

Dʼoù,

.

On pose

, et en utilisant le DL de , on obtient le DL de 

Puis on multiple par le DL de  à l'ordre 
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Remarque

Si  admet un DL au voisinage de .

Exemple

Calculons le DL de la fonction  à l'ordre  au point .

Comme   alors on a 

 et .

Appliquons la division selon les puissances croissantes, on obtient 

Parité du DL en 0 Complément

Si  est une fonction paire qui admet un DL en , alors son DL ne contient que des puissances
paire de .

Si  est une fonction impaire qui admet un DL en , alors son DL ne contient que des puissances
impaire de .

Par exemple,  et 

Propriétés :

Si f admet un DL en x_{0} alors  existe.

Si  admet un DL au voisinage de  et  est continue en  alors  est dérivable en 

Conséquences :

1. Si  n'admet pas de limite en , alors f n'admet pas de DL en . par exemple,

 en .

2. Si  n'est pas dérivable en  et  est continue en  alors  n'admet pas DL au voisinage de .
Par exemple,

 en . Comme  est continue en  et elle n'est pas dérivable en  donc elle
n'admet pas DL au voisinage de .

Composition des DL :

Soit

avec  (resp. ) est la partie régulière ( ou principale) du DL à l'ordre  de  (resp. ).

Proposition :

Si , alors la fonction composée  admet alors un DL en 0 à l'ordre , sa partie régulière (
ou principale) s'obtient en tronquant à l'ordre , la composée 
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Exemple

Calcul du DL de  en  à l'ordre .

Quand  tend vers ,  tend vers , alors 

Considérons ensuite l'expression , au voisinage de , on a 

En remplaçant  par sa valeur, on trouve 

.

Exemple

Développement limité de  à l'ordre  au voisinage de  sur 

On a 

.

On pose 

 Ainsi

Dʼoù,

3. Application des développements limités

3.1. Fonctions équivalentes

Définition

Deux fonctions  et  sont dites équivalentes au voisinage de  (  peut être égal à ) si et

seulement si . On écrit : .

Exemple

 car 

Le développement limité d'une fonction  au voisinage de  permet de trouver un équivalent à  au
voisinage de  en prenant le premier terme non nul du DL.
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Exemple

1. 

2. 

3.2. Calcul des limites

L'obtention d'un DL au voisinage de  (  peut être égal à ) d'une fonction  permet de calculer
d'une manière simple la limite de cette fonction quand  tend vers .

Exemple

1. 

On a 

.

Ainsi,

2. 

On a 

Donc,

Dʼoù,

.

Ainsi,

3.3. Équation de la tangente

Proposition :

Si  admet un DL au voisinage de  (  fini) de la forme :

.

Alors,
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 est l'équation de la tangente à la courbe  de f au point .

 est le terme indicateur de la position. La position de cette tangente par rapport à la courbe
 dépend du signe de  et de la parité de .

Exemple

Déterminer l'équation de la tangente à la courbe de la fonction  au  ainsi
que sa position par rapport à la courbe .

Donc,

Ainsi,

Dʼoù,

Ainsi,  est l'équation de l'asymptote par rapport à la courbe de .

Comme  donc la courbe  est au-dessus de l'asymptote .

4. Exercices

Exercice 1 :

1. Déterminer le DL de  au voisinage de  à l'ordre .

2. Déterminer le DL de  au voisinage de  à l'ordre .

3. Déterminer le DL de  au voisinage de  à l'ordre .

4. Déterminer le DL de  au voisinage de  à l'ordre .

Exercice 2 :

Calculer les limites suivantes en utilisant les DL.

1. .

2. .

3. .

4. .
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Exercice 3 :

Soit  la fonction définie par : 

1. Déterminer le développement limité de , à l'ordre  au voisinage de .

2. En déduire l'équation de la tangente au point d'abscisse  et la position de la tangente par
rapport à la courbe.

Exercice 4 :

1. Calculer le DL à l'ordre  en  de  et .

2. En déduire : 
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