Chapitre 5 : Développement limité I

Les développements limités sont l'outil principal d'approximation locale des fonctions. Chercher un
développement limité d'une fonction f au voisinage d'un point a, c'est chercher un polynéme qui, au
voisinage de a, se comporte comme f.

Les objectifs spécifiques

Al'issue de ce chapitre, l'apprenant sera capable de :
e Connaitre les différentes formules de Taylor.
e Connaitre les développements limités usuelles.

e Mener des opérations sur les DL.

1. Formule de Taylor

1.1. Formule de Taylor-Young

Théoréeme:

Soit f : 1 a,b[— R, xo €] a, b . Supposons que f est de classe n — 1 sur Ja, b[ et f®(xy) existe
(finie). Alors Yx €]a, b[,on a

f(o) [’ (0)

(x - x0) + f “(x0)

(x x0)2+...+n—(x x0)" + (x = x0)" & (x)y

fx) = f(xo) +

ou € est une fonction deflnle sur]a, b[ telle quelim,_,,, € (x) =0

Remarque:

Le terme(x — xg)" &€ (x) avece (x) — 0 lorsque x — X, sera noté paro(x — xp)".
1.2. Formule de Maclaurin Young

Lorsque xo = O € ]a, b[ dans la formule précédente, on obtient la formule de Maclaurin a l'ordre n
avec reste de Young :

” (n)
f()—f(0)+f(0)x+f250) . f (0)x”+x £ (x),

avecg (x) — Olorsquex — 0.

2. Développement limité

2.1. Développement limité au voisinage de 0

q Définition

Soit f une fonction définie sur un voisinage de 0, sauf peut-étre en 0. On dit que f admet un
développement limité d'ordre n au voisinage de 0, s'il existe un intervalle ouvert J de centre O et des
constantesag, dj, ....,d, € Rtelsque pourtoutx € J\ {0}, ona

f(x)=ag+a1x+..+a,x" +o(x"),



ouo(x") = x"e (x)aveclim,_,p& (x) = 0.

Le polynéme P,(x) = ap + ajx + ... + a,x" est dit partie réguliere du développement limité et
x"& (x) le reste ou terme complémentaire.

? Exemple
Pour x # 1, on obtient par division suivant les puissances croissantes a ['ordre n
1 n+1

— =14+ x+ X+ + X+ =l+x+x2+..+x" ,
1-x -X 1—x

x ~ ’ . . ’
or,e (x) = T— — O quand x — 0, d’ou le développement limité de )

- X - X

=l+x+x24...+x + x"e (%)

1—x
Théoréme:

Si f admet un DL d'ordre nau voisinage de ), alors ce DL est unique.

Conséquence :

Si f admetun DL a l'ordre nau v(0) et f de classe C", alors

(0
a; f,( ), i=0,..,n.

I

Théoréme:

Une fonction de classe C” sur un intervalle I (0 € I) et que f ™(0) existe. Alors f admet au voisinage
de O le développement limité d'ordre n suivant

X x? X"
Jx) = fO)+f ’(O)F + f”(O)g + .t f(”)(O)m + o(x").

? Exemple

Le développement limité d'ordre 4 de quelques fonctions usuelles au voisinage de 0 :

2 3 4
X X X X

lLe* = —+ =+ =+ = 4.

e 1+1!+2!+3!+4!+0(x)

3

_ XX 4
2.sin (x) = 1—!—54'0()6 ).

2 )C4 .
3.COS(X):1—2—!+4—!—O(X ).

2 x3 X3 X4

_ L, o o X 4
4In(1+x)=x 2+3+3 4+0(x).

4

12X 4
5.ch(x)=1+ 1!+4! + o(x™).
3
_ XX 4
6.Sh(X)—1—!+§+O(.X).

2.2. Développement limité au voisinage d'un point

Pour déterminer le (DL) au voisinage de @, on pose h = x —a : (x = a & h — 0). Puis, on écrit le
(DL) au voisinage deh = O et on remplace parh = x — a.




DL de la fonction e * au voisinage de 1 d'ordre n.

On pose:
h=x-1eox=h+1
x—>1eoh-0

On a DL de la fonction e” au voisinage de 0 :

N hZ n
e :1+F+2_!+ .+—'+0(h)
Alors,
h 2 h"
x _ l+h _ . h _ . ° n
et =e =e-e —e(1+1!+2!+...+n!+o(h)).
Ainsi,
_12 -1
ermeltao1+ D L&D o),
2! n!
D’ou,
_12 — 1)
ex:e(x+u+...+¥+o((x—l)")).
n!

2!

DL de la fonctionIn (1 + 3x) au voisinage de 1d'ordre 3.
On pose:

h=x-1lex=h+1

x—>1leh-0

Ona:

ln(l+3x):ln(l+3h+3):1n(4+3h):1n(4(l+34—h)):1n(4)+1n(l+¥).

Donc,

h
h—0s 3? — 0, Alors

Ainsi,
3x—1)  9x—1)? L - 1)}
4 32 64

In(1+3x)=In4) +

— o).

+o((x - D).

2 Exemple

? Exemple




2.3. Développement limité au voisinage de l'infini

Q Définition

Le développement limité de f au voisinage de l'infini, se rameéne a un développement limité au
voisinage de (), en posant :
1

h=-
X

x—oooaoh—0

? Exemple
, \ . 1-3x

Développer a l'ordre 3, la fonction f : x — au voisinage de +0o.

1
Onpose: x = E,alorsx -0 h—0.

3
(h) = L _hes = (h=3)— = (h=3)(1 - h+ 1 = I® + o(h*)
! I T T+h o
h
Alors,
1
f(z) = -3 + 4h — 4h? + 413 + o(WP).
Donc,
4 1

f(X): -3+ —-- —2-|'—3 +0(—3).

X X X X

? Exemple
Développer a l'ordre 2, la fonction f : x — exp ( 1)au voisinage de +o0o0.
x [—

1 1

Onpose: X = 7 S h=—,doncsix > +00 = h — 0.
X

1 ko 2 2y — 3.2 >
f(h)—exp(l_h)—exp(h+h + o(h ))—1+h+2h + o(h?).
Ainsi,

1 3 1
f(x):1+—+—x2+0(—).
x 2 x2

2.4. Opérations sur les développements limités

Soient f, g deux fonctions dont les développements limités au v(0) sont
f(X) =ap+ arx + axx* + ... + a,x" + o(x").

g(x) = by + bix + byx? + ... + b,x" + o(x").

Oua;, b; € R.




Somme et produit:

Le développement de lasomme f + gest

fx) + g(x) = (ap + by) + (a1 + b))x + ... + (a, + b,)Xx" + o(x").
Le produit admet le développement suivant :

f(x) - g(x) = agbg + (agh1 + boar)x + ... + (apb,, + a,bp)x" + o(x").

? Exemple
DL d'ordre 3 au voisinage de 0 de la fonction x > e* + cos (x) est
. x xX X 3 x? ;
e +Cos(x):(1+ﬂ+§+§+0(x )+(1—5+0(x ).
Ainsi,
P
e +cos(x)=2+x+ N +o(x%).
? Exemple
DL d'ordre 3 au voisinage de O de la fonction x + sin (x) In(1 + x)est
3 2 3
sin (x)In (1 +x) =(x— ll + o(x}))(x - l + i + o(x%).
3! 2 3
Ainsi,
3
sin (x)In (1 + x) = x> — 5 + o(x%).
Quotient:
Ona
Jfx) 1
L2 = ) —.
8(x) g(x)
Sig(x) =bg+b1x+ byx? + ... + byX" + o(x") etby # 0. Alors,
[ 1
g(X) by +bix+byx? + ... + byx + o(x"1)’
Donc,
I 1
B b b b '
80 Bo[l + —x + —2x2 + ... + — " + o(x"t1)]
bo by by
D’ou,
1 1
o(x) by . Db b b ‘
8 bo 14+ =X+ =22 4 oo+ 2x7 + o(x+])
o bo bo
On pose
b b b 1
X=l4—x+ 22+ +2x"+ o(x"), et en utilisant le DL de , on obtient le DL de —.
by" by bo l+x 8(x)

Puis on multiple par le DL de f(x)al'ordre n.



Chapitre 5 : Développement limité

Q Remarque

Silim,_,0g(x) # 0 = ]—C admet un DL au voisinage de 0. {
8

? Exemple

n (x)

S1
Calculons le DL de la fonction f(x) = tan (x) =
COS

al'ordre3 au point 0.

Comme lim,_,gcos (x) # 0,alorsona
3 2

- % +o(x*)etcos (x) =1 - % —o(x3).

Appliquons la division selon les puissances croissantes, on obtient

f(x) =tan (x) = z:; (();)) =x+ %x3 + o(x>).

sin (x) =

Parité duDLen 0 G_ Complément

e Si f est une fonction paire qui admet un DL en (), alors son DL ne contient que des puissances
paire de x.

e Si f est une fonction impaire qui admet un DL en 0, alors son DL ne contient que des puissances
impaire de x.

Par exemple, X > cos (x)et x > sin (x).

Propriétés :
o Sifadmetun DL enx_{0}alors lim,_,,, f(x) existe.

e Si f admetun DL au voisinage de Xy et f est continue en Xgalors f est dérivable en xj.

Conséquences :
1. Si f n'admet pas de limite en X, alors f n'admet pas de DL en X. par exemple,
1
f(x) =sin (=)enO.
X
2. Si f n'est pas dérivable en xg et f est continue en X alors f n'admet pas DL au voisinage de X.
Par exemple,
f(x) =] x|en xy = 0. Comme f est continue en O et elle n'est pas dérivable en O donc elle
n'admet pas DL au voisinage de 0.
Composition des DL :
Soit
f(x) = ap +aix +arx* + ... + a,x* + o(x"),
g(x) = by + bix + byx? + ... + b, X" + o(x"),
avec P, (resp. Q,) est la partie réguliére ( ou principale) du DL a l'ordren de f (resp. g).

Proposition :

Si f(0) = 0, alors la fonction composée g o f admet alors un DL en 0 a l'ordre n, sa partie réguliére (
ou principale) s'obtient en tronquant a 'ordre n, la composée Q,, o P,,.

(g0 H®) = g(f(1) = g(x) = co + c1f(X) + 2 f 2 (N) + oo+ Cuf " (1) + (7).



2 Exemple

Calculdu DL deh(x) = sin (In (1 + x))en0a l'ordre3.

Quand x tend vers 0,In (1 + x) tend vers 0, alors
2 3

X
u=In(l+x)=x— =+ = +o(x).
2 3
Considérons ensuite ['expression y = sin («), au voisinage de 0, on a

3
sin (1) = u — I3 + o).

En remplacant u par sa valeur, on trouve
2 3

h(x) = sin (In (1 + ) = x = = - % + o(x3).

2 Exemple

T
Développement limité de y/cos (x) a l'ordre 2 au voisinage de 05ur[—§, 5].

Ona
2
cos (x)=1-— T o(x?).

On pose
2
cos(x)=1+u=u=cos(x)—1= —E,Ainsi
1 1
Veos(x) = Vl+u=1+ i guz + o(u?).
D’ou,
2
veos (x) =1 — T o(x?).

3. Application des développements limités

3.1. Fonctions équivalentes

q Définition

Deux fonctions f et g sont dites équivalentes au voisinage de X (xo peut étre égal a +00) si et

: f(x)
seulementsilim,_,,, =—— = L.Onécrit: f ~, g.
’ g(x) S
? Exemple
sin (x)

1.

sin (x) ~¢ x carlim,_, ‘
X

Le développement limité d'une fonction f au voisinage de x( permet de trouver un équivalent a f au
voisinage de xg en prenant le premier terme non nul du DL.



? Exemple

1
LIn(l+x)=x+ §x2+0(x2). = In(l+x) ~g x.
2

X
2.ex:1+x+5+0(x2). = e’ ~y1+nx

3.2. Calcul des limites

L'obtention d'un DL au voisinage de Xy (Xo peut étre égal a oo) d'une fonction f permet de calculer
d'une maniére simple la limite de cette fonction quand x tend vers Xx.

? Exemple
1 Tim, o 2 =X
X
Ona
3
SIn (%) — % _ X_F+O(X3)_x _ _l+0(1)
x3 x3 6 '
Ainsi,
lim, sin (x) — x _ _l.
- x3 6
2 lim, l+In(l1+x)—e”*
1 —cos (x)
Ona

X2 X2 )
1 —cos (x - 2
) 1—1+%+0(x2)

Donc,
l+ln(I+x)—e* —x% + o(x?)
1 —cos (x X2 '
*) all + o(x?)
2
D’ou,
I1+In(1 —e”
tndro=e’ Lo,
1 —cos (x)
Ainsi,
Il+In(l1+x)—e”*
lim, o i +o=-e’
1 —cos (x)

3.3. Equation de la tangente

Proposition :
Si f admet un DL au voisinage de Xy (X fini) de la forme :
F(x) = ag + ar(x — x0) + ... + ap(x — x0)* + o((x — x0)°), keN, k> 1

Alors,

10
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Y = ap + a1(x — xp) est 'équation de la tangente a la courbe (Cf) de f au point (xo, f(x0)).

ar(x — xo)k est le terme indicateur de la position. La position de cette tangente par rapport a la courbe
(Cy) dépend du signe de ay et de la parité dek.

2 Exemple

Déterminer 'équation de la tangente a la courbe de la fonction f(x) = In (1 + x + x%) au v(0) ainsi
que sa position par rapport a la courbe (C).

f(x)=In(1+u), avec u=x+ x°.

Donc,

W2
fxX)=u- 5l + o(u?).
Ainsi,

f(x)=x+x*- %(x + x2)% + o(x?).
D’ou,
f(x)=x+ %xz + o(x?).

Ainsi,(T) :y = xestl'équation de ['asymptote par rapport a la courbe de f.

1
Comme Exz > 0, donc la courbe (C) est au-dessus de 'asymptote (T').

4. Exercices

Exercice1:
1. Déterminer le DL de x> — 2x au voisinage de13a l'ordren = 3.

2. Déterminer le DL de /1 + sin (x) au voisinage de 0 a l'ordren = 3.

sin (x
3. Déterminerle DLdeln ( )

) au voisinage de 0 a l'ordren = 4.

4, Déterminer le DL de au voisinage deco a l'ordren = 2.

VX +
Vx+2
Exercice 2:

Calculer les limites suivantes en utilisant les DL.

1 1
Jdim, - )
L m 1()c—l ln(x))
> fim,, Y= Ve
In(x)—1

1
3.1im,_ 400 X*(exp (=) — exp (—)).
X 1+x

1 1
4. 1im ;400 X (argsh(=) + arcsin(=) — =).
X XX

11
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Exercice 3:
Soit f la fonction définie par: f(x) = VI +x+ 22,
1. Déterminer le développement limité de f, a l'ordre 2 au voisinage de 0.
2. En déduire l'équation de la tangente au point d'abscisse x = 0 et la position de la tangente par
rapport a la courbe.
Exercice 4:
1. Calculer le DL a l'ordre 2 en x = 2de f(x) = In(x) et g(x) = x> — x> — x — 2.

In(x) — In(2
2. En déduire: lim,_,, 3n(x) n(2)
x

-x2-x-2

12
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