Chapitre 6 : Algebre linéaire |

1. Lois et composition interne

1.1. Définitions et propriétés

q Définition

Soit E un ensemble. Une loi de composition interne (l.c.i) sur E est une applicationde £ X E dans E.

Six est le symbole désignant cette l.c.i, l'image de (x, ¥) est notée x * y.

Ainsi, se donner une l.c.ix sur E, c'est se donner une application
EXE—>E
(x,y) = x % y.

2 Exemple

e Sur E = 7, l'addition +, la multiplication X et la soustraction — sont des lois de compositions
internes.

e Ladivision <+ constitue une l.c.i sur l'ensemble Q* (ou sur R* ou C¥).

Propriétés :

Dans toute cette section, (E, %) désigne un ensemble muni d'une l.c.i.

Associativité Q Définition

On dit que x est associative lorsque, pourtous x, y, z€ E,x* (y*z) = (x*y) * Z. ‘

Commutativité q Définition

On dit que * est commutative lorsque, pourtous x, ye E,x*y =y * X. ‘

Elément neutre q Définition

xadmetun élémentneutresi, de€ E /Vx € E : xxe=e*x = x. ‘

Symétrique m Définition

x admet un élément symétrique dans E si tout éléments de E admet un symétrique dans E, i.e ‘

VxeE,AX e E/xxx' =x xx=e.
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? Exemple

1
DansR \ {5},on définit la loi de composition % par
X*xy=x+y—2xy.

1
e LaloixestinternesurR \ {5} En effet,

1 1
soientx, y € R\ {5},montrons quex*xy€R\ {5},comme

1 1 1
x*y=§(:)x+y—2xy:§@x(l—Zy)—z(l—Zy):O,
1 1 1 1
x*y—§®(1—2y)(x—§)—0®y—§ ou x—z.
D'ol
1 .
x*xy€eR\ {E}et alors x est une loi interne.
e Laloi*est commutative. En effet,
1
Soient x, Yy, zER\{E},ona
X*ky=X+y—2Xxy=y+x—2yx =yx*Xx,
donc la loi x est commutative.

1
e La loixest associative. Car, pourtoutXx, y, Z € R\ {E}’ ona

(xxy)xz=((x+y-2x)*xz=(x+y—-2xy) +7-2(x+y—2xy)z.
Ainsi,
(xxY)xz=x+@+2-2y7) - 2x(y+z—2y2) = x+ (y*2) — 2x(y * 7).
D’ou,

(xxy)sz=12x%(y*2).

dong, la loi % est associative.

e La loixadmetun élément neutre, car
1
Soitx € R\ {E},telque:x x e = x,alors

1
xX+e—2xe=e+x—2ex=x @e(l—Zx)zO@ezOER—{z}.

Donc la loi * admet comme 'élément neutre élémente = 0.

e Laloixadmet un élément symétrique. En effet,on a

1
Soitx € R\ {5},x x x' = e, alors

X 1
x+xX =2xx =0 X(1-2x)=-xo X = (carx # =)
2x—1 2
Dong, 'élément symétrique de x est

1
X' = 2xx— 1,pourtoutxe]R\{z}.
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Distributivité q Définition

Soit £/ un ensemble muni de deux lois de composition internes, notées A et .
On dit que * est distributive par rapport a A si:
Vx, v, z€ E, x%x(yAz) = (x*y) A (x *2).

1.2. Structure de groupe

q Définition

Soit £ un ensemble muni d'une loi de composition *. On dit que (E, %) est un groupe si la loi * satisfait
aux trois conditions suivantes :

1. x est une loi de composition interne.
2. % est associative.
3. admet un élément neutre.

4. Chaque élément de E admet un symétrique pour .

Si de plus, la loi est commutative, on dit que le groupe est commutatif ou abélien.

? Exemple

1
1L.(R\ {5}, ), oU  la loi définie dans 'exemple précédent, est un groupe.

2.(Z, +) est un groupe commutatif.
3.(R, X)n'est pas un groupe car 0 n'admet pas d'élément symétrique.

4, (R*, X) est un groupe commutatif.

Q Définition

Soit (E, %) un groupe. Une partie H C E (non vide) est un sous groupe de E si, la restriction de
l'opération * a H lui confére la structure de groupe.

Proposition :
Soit H une partie non vide du groupe (E, *). Alors, H est un sous-groupe de E si, et seulement si
e pourtoutx, y€ H,onaxx*y € H.

e pourtoutx € H,onax’ € H,avec x’ le symétrique de x.

2 Exemple

(R}, X) est un sous-groupe de (R*, X). En effet,
1.Six, ye R} alorsx Xy e R:.

2.Six € R*, alors I'élément symétrique de x noté x™! = — € RI.
X
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1.3. Structure d'anneau

Q Définition

Soit A un ensemble muni de deux lois de compositions que on noterons A et x.
Ondit que (A, A, %) est un anneau si les conditions suivantes sont satisfaites
1. (A, A) est un groupe commutatif.
2. La loi * est associative.

3. La loi x est distributive par rapport a la loi A.

Q Remarque

e Side plus la loi x est commutative, on dit que ['anneau (A, A, %) est commutatif. {

e Silaloixadmetun élément neutre, on dit que I'anneau (A, A, *) est unitaire.

? Exemple

(Z, +, -) est un anneau commutatif et unitaire. {

q Définition

Si(A, A, %) est un anneau et B est une partie de A, on dit que B est un sous-anneau de A si, B muni
des lois induites par A, est lui-méme un anneau, c'est-a-dire (B, A, *) est un anneau.

Dans ce qui suit, A désignera ['anneau (A, +, -) avec 0 ['élément neutre de + et s'il est unitaire, 1 serait
son unité.
Proposition : "Caractérisation des sous anneaux"
Une partie B de l'anneau A est un sous-anneau de A si et seulement si
1. Pourtousa,b € B, a+ (-b) € B.
2. Pourtousa,b € B, ax b € B.

? Exemple

L'ensemble 2Z = {2z : z € Z}est un sous-anneau de ['anneau (Z, +, -). En effet,
soientx, y € 2Z, ilexisten,m € Z,telsque:x = 2nety = 2m,etona
x—y=2n—-m)e2Zetxy =212nm) € 2Z.

1.4. Structure d'un corps

q Définition

Soit K un ensemble muni de deux lois de compositions toujours notées A et x.
ondit que (K, A, *) est un corps si les conditions suivantes sont remplies

1. (K, A, %) est un anneau.

2.(K\ {e}, A) estun groupe, ol ¢ est |'élément neutre de x.

Si de plus A est commutative, On dit que (K, A, *) est un corps commutatif.
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? Exemple

(R, +, X) est un corps commutatif, car
1. (R, +)est un groupe commutatif.
2. (R \ {0}, x) est un groupe commutatif.
3. La loi X est distributive par rapport a+.

q Définition

Soient (K, A, X) un corps et H un sous-ensemble non vide de K. On dit que (H, A, X) est un sous-
corpsde (K, A, X)si

1.(H, A) est un sous-groupe du groupe (K, A).
2.(H \ {ea}, A) est un sous-groupe du groupe (K \ {ea}, X).

? Exemple

(Q, +, X) est un sous-corps du corps (R, +, X). ‘

2. Espace vectoriel

2.1. Définitions et propriétés élémentaires

Soit K un corps commutatif (généralement K = R ou C) et soit E un ensemble non vide muni d'une
loi interne notée (+) tq

(+):EXE—>E

(x,y) > x+y
et d'une loi externe notée (+)
():KXE—>E
Ay)—a-y

q Définition

Un espace vectoriel sur le corps K ou un K- espace vectoriel est un triplet (E, +, ) tel que

1. (E, +) est un groupe commutatif.

2VA1eK, Vx,ye E, A-(x+y)=4-x+41-y.

VAL uekK, VxeE, (A+u) - x=A-x+u-x

4aNA, uekK, Vxe E, (Au)-x=Au- x).

5.Yx € E, 1g - x = x. (Ig est l'élement neutre de XdansK )

Les éléments de 'espace vectoriel sont appelés vecteurs et ceux de K des scalaires.

? Exemple

e (R, +,:)estunR-espace vectoriel.
e (C,+,-)estunC- espace vectoriel.

e (R", +,-)est un R- espace vectoriel.
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Proposition :

Si E est K- espace vectoriel, alors on a les propriétés suivantes
1.VYxeE, Og - x = Of.
2.YVx€eE, (-lg)-x=—x.
3.VA1eK, 4-0g =0p.
ANVNAeK, Vx, yeE, - (x—y)=Ad-x—A-)y.
5YAe K, VxeE, 1-x=0g © A =0 oux =0

q Définition

Soit (E, +, -) un K- espace vectoriel et soit " un sous-ensemble non vide de E.

On dit que F est sous espace vectoriel si (F, +, -) est aussi un K-espace vectoriel.

Théoréme :
Soit(E, +, -)un K- espace vectorielet ' C E, F # () on a les équivalences suivantes
1. F est un sous espace vectoriel de E.
2. F est stable par 'addition et par la multiplication c'est a dire :
YAeK, Vx,yeF : A-x€F et x+y€cF.

? Exemple

Soit E = R, [x] (I'ensemble de tous les polynémes de degré < n), on définie le sous ensemble H par
H={(PeE :P=ax? acR).
H est un sous-espace vectoriel de E, car
1.Poura=0,0na:P=0-x*=0p € H.
2.SoientP, Q€ H, da, be R/ P = ax? etQ = bx2. Alors
P+Q=(a+b)-x*cH.
3.SoientP € HetA € R,ona
P =ax?, ae€R,alors:1- P = lax* = bx*avech = da € R, donc AP € H.

Proposition :

L'intersection d'une famille non vide de sous espace vectoriel est un sous-espace vectoriel.

Q Remarque

La réunion de deux sous-espace vectoriel n'est pas forcément un sous-espace vectoriel.

? Exemple

Soient F; = {(x,y) e R? : x = 0} et F, = {(x,y) € R? : y = 0} deux sous-espaces vectoriels dans
Rz, F; U F5n'est un sous-espace vectoriel, car

Pouru; = (0,1) € Fy, up = (1,0) € F,,ontrouve
uy+uy=~,1)¢ F; U F».
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2.2. Somme de deux sous espaces vectoriels

q Définition

Soient E, E, deux sous-espaces vectoriels d'un K-espace vectoriel E, on appelle somme des deux
sous-espaces vectoriels, Ej et Ey, que l'on note E| + E5, 'ensemble suivant

Ei+Ey={xeE:Ax; € E;,Ax, € E; tel que x = x1 + x,}.

Q Remarque

Deplus, E; + Eyestuns.evde E,donconatoujours £y + E, C E. ‘

2 Exemple

Soient les deux sous-espace vectoriel de R? définie par

Ei={(x,y) €R? : x=0} = {0} xRetE, = {(x,y) € R? : y =0} = R x{0}.
Si(x,y) € R?, alors

(x,y) = (x,0) + (0, y),

donc,

(x,y) € E1 + E»,

d’ou

R? C E;+ EyetcommeE; + E; C Rz, alors on a égalité.

2.3. Somme directe de deux sous espaces vectoriels

% Définition
Soient E , E, deux sous-espaces vectoriels d'un méme K-espace vectoriel E.
Ondira que lasomme E| + Ejestdirectesi E1 N E, = {0}.
Onécrit E1 @ E».

Proposition:
Soient £y , E deux sous-espaces vectoriels d'un méme K-espace vectoriel E.

La somme E| + E» est directe si et seulement si pour tout x € Ey + Ej, il existe un unique vecteur
x1 € Eq,ununique vecteur x, € Ej,telquex = x1 + x3.

? Exemple

Soient F; ={(x,y,2) € R :x=0} et Fp= {(x,y,2) € R3 : y=2=0} des sous-espaces
vectoriels de R3,

e Soit(x,y,z) € R3alors: (x,v,2) = (0,y,2) + (x,0,0) € Fy + F,,d’ou
F, + F, > R3etonaF|+ F, C R3, donc
Fi+ F, =R?

e Soit(x,y,z) € F1 N Fp,alors(x,y,z) € Fret(x,y,z) € Fy,casignifie que
x=0ety=2z=0,alors
(x,y,2) = O3, c'est-a-dire F'; N Fy C {0}, etonatoujours {0} C F| N F».
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Enfin, on conclus que R3 = F; & F>.
2.4. Familles génératrices, familles libres et bases

Dans la suite, on désignera l'espace vectoriel (E, +, -) par E.
Q Définition

1. On dit que {eq, ez, ..., e,} est une famille libre (ou les vecteurs ey, ea, ..., e, sont linéairement
indépendants), si

Soit E un espace vectoriel eteq, e, ..., €, des éléments de E.

YA, A, o, 4, €Kt Qier + hep + .+ e, =0 = 4 = =...= 4, =0g.
Dans le cas contraire, on dit que les vecteurs ey, €2, ..., €, sont liés.
2.0n dit que {e, ez, ...,e,} est une famille génératrice de £, ou que E est engendré par
{e1,ea,...,e,}si
VYxe E, Ay, Ay, ..., 4, €K, x=A1e; + ey + ... + A,e,.

3.Si{eq, e, ..., e,} est une famille libre et génératrice de E, alors {eq, e, ..., e, } est appelée une
basede E.

? Exemple

SsurR? onpose:u; = (1,0), up = (1, —1), alors{u;, us} est une base de R En effet,
e {uy,us}estlibre. Soientay, as € R,
ajuy + azxuy = Ogz - = @1(1,0) + ax(1, 1) = (0,0),
= (a1 + @2, —a2) = (0,0),
= a; =Q) = 0.
e {uy, up} est génératrice. Soit (x,y) € R?,
(x,y) = ajuy + pup = (@ + @p,—@) = @ = -y € Retay = x+y eR,

Q Remarque

Dans un espace vectoriel E, tout vecteur v non nul est linéairement indépendant, donc la famille {v} est

libre.

q Définition
Soit E un K- espace vectoriel de base B = {ey, 2, ..., €,,}, on appelle dimension de E, noté dim(FE) le
nombre défini par dim(E) = Card(B) = n,
ou Card(B) est le cardinal de B.

dong,ilexistea), as € R/ (x,y) = aju; + arus.

? Exemple

onposee; = (1,0,0), e; = (0,1,0), e3 = (0,0, 1),alors{ey, e, e3} est une base de R3, donc
dim (R?) = Card ({e}, 3, e3)) = 3. {

10
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3. Application linéaire

3.1. Définitions

Q Définition

Soient E et F' deuxK-espaces vectoriels. Une application f de E dans F est une application linéaire si
elle satisfait aux deux conditions suivantes

e Yx, yeE, fx+y) = fx)+ fy),
e Vxe E,VAeK, f(4-x)=41" f(x),
ou, d'une maniere équivalente
o Vx, yEENA, L eK, f(A -x+d-y)=A - f(X)+ s - f).

Q Remarque

L'ensemble des applications linéaires de E dans F est noté L(E, F). ‘

? Exemple

L'application:
f: R - R

(xy) P fy)=x-y,
est une application linéaire, car
Pour tout (x, ), (x’,y") € R?et A, 4, € R,ona
Sy + L,y) = flhix+ x, Ly + y),
= Aix+ x' —A4y— Ay,
A(x =) + (X =),
S0 y) + X, Y).

m Définition

Soient E et F' deux K-espaces vectoriels, et soit f : E — F une application. On dit que

1. f est un isomorphisme, si f est linéaire et bijective.
2. f estun endomorphisme, si f est linéaire avec E = F.

3. f est un automorphisme, si f est un endomorphisme bijective.

? Exemple

L'application f définie par:
f: R — R
x = f(x)=-2x,
est un automorphisme. En effet, soient x, y, 41, 4o € R,ona
flix+ A2y) = =2(ix + Ay) = Li(=2x) + 1(=2y) = 41 f(x) + L f (D).

L'application f est bijective, donc f ~lexiste et on a

11
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f1: R - R {

X f‘l(x)=_71x.

3.2. Noyau, image et rang d'une application linéaire
Q Définition

e L'ensemblef(E)s'appelle l'image de 'application linéaire f et est noté Im f, donc

Imf ={f(x) : xe€ E}.
o L'ensemble f~1({0}) s'appelle le noyau de ['application linéaire f et est noté Ker f, donc
Kerf={xeE: f(x)=0g}.

Soit f une application linéaire de E dans F'.

Proposition :
Soit f une application linaire de E dans F, alors
1. Imf estun sous-espace vectoriel de F.

2. Ker f est un sous-espace vectoriel de E.

? Exemple

Soit f : R?> — R une application linéaire définie par f(x,y) = x — y.
e Lenoyau de l'application linéaire f est
Kerf ={(x,7) eR*:x-y=0}={(x,7) eR*: x =y} = {x(1,1) : xR},

donc Kerf est un sous-espace vectoriel engendré pare = (1, 1) donc il est de dimension 1, et sa
base est {e}.

e L'image de l'application linéaire f
Imf = {f(x,y) : (x,y) R} ={x -y : (x,y) eR*} =R,

q Définition

Soit f une application linéaire de E dans F, si dim( Imf) = n < +00, alors n est appelé le rang de f
et on le note rg (f).

Proposition :

Soit f une application linéaire de E dans F. On a les équivalences suivantes
1. f est surjective Imf = F.
2. festinjective © Kerf = {0g}.

? Exemple

Soit f définie par
f R3 - R?

(x,y,z) = f(x,y,z):(—x+y,x—z,y).
Ona

Im f ={f(x,y,2), (x,,2) €R*} = {(-x +y,x - 2,, (x,3,2) € R*}.
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Ainsi,

Im f = f{x(=1,1,0) + (1,0, 1) + z(0, —1,0), (x,v,2) € R3}.
D’ou,

Im f = Vect{(-1,1,0), (1,0,1), (0,-1,0)},

et

Ker f = {(x,y,2) € R?, f(x,y,2) = (0,0,0)}.

Ainsi,

Ker f ={(x,y,2) €R?, (=x +y,x—z,y) = (0,0, 0)}.
D’ou,

Ker f ={(0,0,0)},

alorsImf = R*et Kerf = {Ops}, donc f est bijective.

Proposition :
Soit f une application linéaire de E dans F avec dimension de E finie. Alors, on a
dim E = dim Ker(f) + dim Im(f).

Corollaire :

Soient E, F desK-e.vet f estune application linéaire de E vers I avecdim E < +oo.
e Sil'application linéaire f est injective alorsdim E < dim F.
e Sil'application linéaire f est surjective alorsdim E > dim F.

e Sil'application linéaire f est bijective alorsdim E = dim F.

? Exemple

Soit f définie par
f: R - R
(x,y) >  f(x,y)=x+2y.
Ona
Ker f ={(x,y) € R2, f(x,y) =0} ={(x,y) € R2, x+ 2y = 0}.

Ainsi,

Ker f = {(x,y) € R?, x = =2y} = {(=2y,)), y € R}.
D’ou,

Ker f ={y(-2,1), y € R} = vect {(-2, 1)}.

Alors,

dim Kerf = 1, et comme dim R? = 2,donc
dim Imf = dimR?> — dim Kerf =2-1=1.

Théoréeme:

Soient E et F' deux espaces vectoriels réels de dimensions finies. Si f est une application linéaire de E
vers ', alors

e festinjectivessirg (f) =dim E.
e festsurjectivessirg (f) = dim F.
o festbijectivessirg (f) = dim E = dim F.

13
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4. Exercices

Exercicel:

On définitsurG =] — 1, 1], la loi interne * comme suit :

+
Vx,y) eGXG : x*xy= Ty

I+xy

Montrer que (G, *) est un groupe commutatif.

Exercice 2:

Onconsidére:Z[\/i] a+b\/§ a, beZ).
Montrer que (Z[ \/5], +, X) est un anneau.

Exercice 3:
On considére dans R, le sous-ensemble E défini par:
={(x,y,200 €R® :x+y+2z=0).
1. Montrer que E est un sous-espace vectoriel de R3.

2. Donnerune basede E.

Exercice 4:

Soit f : R? — R?définie par:

f,v,2) = (x+y+2,2x+y—72), pour tout (x,y,7) €R>.
1. Montrer que f est linéaire.

2. Déterminer Ker (f).

Exercice 5:
Soit l'application f définie de R? dansR?par: f(x,y) = (x + y, x — y).
1. Montrer que f est linéaire.
2. Déterminer Ker (f)et Im (f) et donner leurs dimension.
3. f est-elle bijective ?
Exercice 6:
Soit f définie de R*dansR* par: f(x,y,z, 1) = (x =2y, x = 2y,0,x — y — z — 1).
1. Montrer que f est une application linéaire.

2. Déterminer le noyau et l'image de f.
3. Atonker (f)®Im (f) =R*?

Exercice 7:
On définitsur R \ {1} la loi de composition interne A par: XAy = x + y — xy.
Montrer que ( R \ {1}, A)est un groupe abélien.

14
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Exercice 8 :
On considere dans R3, le sous-ensemble F défini par:
F={(xy,2eR} 2x+y—z=0}.
1. Montrer que F’ est un sous-espace vectoriel de R3.
2. Donner une base de F', quelle est sa dimension ?

3. F est-il égale aR3?
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